is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

MERICAN
SYCHOLOGICAL
ASSOCIATION

_a—
S\
P

Journal of Experimental Psychology: General

© 2019 American Psychological Association
0096-3445/19/$12.00

2019, Vol. 148, No. 3, 520-549
http://dx.doi.org/10.1037/xge0000569

People Teach With Rewards and Punishments as Communication,
Not Reinforcements

Mark K. Ho

Brown University

Michael L. Littman
Brown University

Fiery Cushman
Harvard University

Joseph L. Austerweil
University of Wisconsin-Madison

Carrots and sticks motivate behavior, and people can teach new behaviors to other organisms, such as
children or nonhuman animals, by tapping into their reward learning mechanisms. But how people teach
with reward and punishment depends on their expectations about the learner. We examine how people
teach using reward and punishment by contrasting two hypotheses. The first is evaluative feedback as
reinforcement, where rewards and punishments are used to shape learner behavior through reinforcement
learning mechanisms. The second is evaluative feedback as communication, where rewards and punish-
ments are used to signal target behavior to a learning agent reasoning about a teacher’s pedagogical goals.
We present formalizations of learning from these 2 teaching strategies based on computational frameworks for
reinforcement learning. Our analysis based on these models motivates a simple interactive teaching paradigm
that distinguishes between the two teaching hypotheses. Across 3 sets of experiments, we find that people are
strongly biased to use evaluative feedback communicatively rather than as reinforcement.
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Consider Alex, a 2-year-old who uses the toilet for the first time.
His parents are thrilled and reward him with a hug and some
candy. Or imagine Fido, a dog whose owner enjoys gardening.
One day Fido tramples on his owner’s flowerbeds. To prevent this
from happening again, Fido’s owner buys an electric collar that
allows him to deliver a mild shock whenever Fido heads toward
the garden. These situations involve teaching with evaluative feed-
back: instances in which people use rewards and punishments
(e.g., candy and electric shocks) to teach another agent (e.g., a
child or a dog) a behavior (e.g., using a toilet or staying out of the
garden).
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People readily use rewards and punishments to teach children
(Owen, Slep, & Heyman, 2012), adults (Fehr & Géchter, 2002),
pets (Hiby, Rooney, & Bradshaw, 2004), and, more recently,
robots (Isbell, Shelton, Kearns, Singh, & Stone, 2001; Knox &
Stone, 2015; Loftin et al., 2014). But how do people teach with
evaluative feedback?

One possibility is that people treat teaching with rewards and
punishments simply as the inverse of learning from rewards and
punishments. Reward learning has been studied for more than a
century, building on foundational accounts such as the law of
effect and operant conditioning (Rotter, 1966; Skinner, 1938;
Thorndike, 1898). Contemporary theories of causal learning, cog-
nitive control, and reward-based decision-making all begin with
the basic idea that organisms learn to take actions that make good
outcomes more likely and bad outcomes less likely (Collins &
Frank, 2013; Dayan & Niv, 2008; Gershman, Blei, & Niv, 2010).
Put somewhat differently, agents learn by adapting their thoughts
and actions to maximize environmental rewards while minimizing
punishments (Sutton & Barto, 1998). Possibly, then, teaching is
designed to provide a set of primary rewards and punishments that,
when maximized by a reward-learning agent, shape their behavior
to match some desired target.

This view is widespread in psychology. Classic theories of
socialization draw on this idea (Aronfreed, 1968; Grusec & Kuc-
zynski, 1997; Maccoby, 1992; Sears, Whiting, Nowlis, & Sears,
1953) and continue to inform our understanding of how parents
teach children (Owen et al., 2012). Moreover, behavioral and
neuroscientific accounts of social rewards are based on related
assumptions about reinforcement and utility maximization in
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games (Fehr & Gichter, 2002; Izuma, Saito, & Sadato, 2008;
Jones et al., 2011; Lin, Adolphs, & Rangel, 2012) as are predic-
tions of teaching in nonhuman animals (Caro & Hauser, 1992;
Clutton-Brock & Parker, 1995; Kline, 2015). Given this account’s
roots in theories of operant conditioning, we call this hypothesis
evaluative feedback as reinforcement.

At the same time, many researchers over the past few decades
have focused on the centrality of mental state inference and rec-
ognition of pedagogical intent when learning from social others.
For instance, theory of mind representations underlie children’s
abilities to successfully learn about hidden causal structure from
behavior (Lyons, Young, & Keil, 2007), imitate intentions based
on failed actions (Meltzoff, 1995), and integrate information about
an actor’s constraints (Jara-Ettinger, Gweon, Tenenbaum, &
Schulz, 2015). Moreover, across a range of domains, it has been
shown that social learning is enhanced when teachers signal their
intention to teach via ostensive or pedagogical cues (Buchsbaum,
Gopnik, Griffiths, & Shafto, 2011; Butler & Markman, 2012,
2014; Csibra & Gergely, 2009; Sage & Baldwin, 2011; Shafto,
Goodman, & Griffiths, 2014). These results provide clear evidence
of deep connections between theory of mind, communicative in-
tent, and social learning.

Could a learner’s theory of mind also play a role in teaching
with evaluative feedback? Specifically, might teachers employ
rewards and punishments designed not as a quantity to be maxi-
mized, but instead as signs to be interpreted in light of teaching
goals? If so, they would expect learners to infer the communicative
intent underlying the set of rewards and punishments that teachers
provide. For example, when Alex’s parents give him candy for
using the toilet, they could expect him to reason “Using the toilet
must be correct since my parents gave me candy” rather than
“Using the toilet is a good way to get candy (i.e., reward).” In other
words, rather than shape behavior through reinforcement, feedback
could signal the correctness or incorrectness of behaviors with
respect to a teacher’s target behavior. We call this alternative
account evaluative feedback as communication.

Our goal is to ask whether people use evaluative feedback as
reinforcement or as communication. To make this problem empir-
ically tractable we exploit a phenomenon called positive reward
cycles (Ng, Harada, & Russell, 1999). In this context, positive
reward cycles are patterns of rewards and punishment that can
signal the correctness of individual actions to a learner who inter-
prets them as signs, and yet would lead a reward-maximizing agent
astray. If we find that human teachers spontaneously generate
positive reward cycles, this would imply that their evaluative
feedback is designed for communication. If we find that they avoid
such cycles, this would be more consistent with their evaluative
feedback being designed for reinforcement.

To illustrate the basic form of a positive reward cycle, suppose
Fido’s owner wants to teach Fido to go into the house by walking
along a path while avoiding flowerbeds. To do so, she gives Fido
a biscuit every time he moves toward the house along the desired
path, hoping to signal that these are the right actions to perform. If
Fido learns from rewards in this way—inferring that they are
intended to communicate the right actions to perform—eventually
he will learn the complete task. But if Fido simply wants to
maximize rewards, he will instead learn to “cycle” back and forth
along the path endlessly, never entering the house. This is the
reward maximizing response because the nonrewarded actions

away from the door position him to gain new rewarded actions
when moving back toward the door. This repetitive behavior by a
reward-maximizing learner is a consequence of positive reward
cycles in a teacher’s pattern of feedback. If Fido learns this way,
then the owner’s best recourse is to break the cycle, either by
rewarding Fido only when he makes it in the house, or by pun-
ishing him for running backward to a sufficient degree that it
offsets the rewards of moving forward.

To characterize whether teachers generate positive reward cy-
cles, we develop formal models of the two learning methods in
question: learning via reinforcement and learning via communica-
tion. These models are described in the General Methods section.
To be clear, these are not computational models of our human
participants, who act as teachers in our experiments. Rather, they
are models that formalize how two different classes of learners
would respond to the rewards and punishments that our human
participants generate. Formally specifying learning allows us to
pin down the assumptions and constraints of learning from rein-
forcement and learning from communication. This, in turn, allows
us to ask whether human teaching behavior succeeds or fails to
meet the qualitative demands of each class of learners (Palminteri,
Wyart, & Koechlin, 2017). Moreover, formalizing these learning
processes motivates a novel teaching paradigm that generates
diverging predictions for evaluative feedback as reinforcement
versus communication.

Using our paradigm, we conducted three sets of human exper-
iments. Experiment 1 investigated whether people produced pos-
itive cycles when delivering feedback for individual actions taken
by virtual dogs. The studies in Experiment 2 looked at how
participants teach a single dog preprogrammed to improve over
time. This enables us to determine whether people produce posi-
tive cycles across multiple stages of successful training. The stud-
ies in Experiment 3 had participants interactively teach different
learning algorithms that treated feedback as either reinforcement
or communicative signals. This allowed us to test the effectiveness
of people’s teaching strategies as well as whether they adapted
their strategies to different learning mechanisms. Across all of
these studies, results indicate that people have a strong bias to use
rewards and punishments as communicative signals rather than as
reinforcement.

General Methods

In this section, we formalize teacher—learner interaction dynamics,
learning from reinforcement (the reward-maximizing model), and
learning from communication (the action-signaling model). In addi-
tion, we note that our goal is to characterize the assumptions of two
broad classes of models and not necessarily to provide fine-grained
predictions of teacher behavior. By formally analyzing the general
properties of the reward-maximizing and action-signaling models, we
can isolate specific qualitative predictions that rule out one or the
other class of models. In particular, we show how certain patterns of
feedback give rise to positive reward cycles, which should not occur
if people are teaching with reinforcement but may occur if people are
teaching with communication. This analysis motivates the design of
the Path-Following teaching paradigm that distinguishes between the
two teaching accounts.
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Modeling Teacher-Learner Dynamics

The interaction between a teacher and learner can be modeled as
a modified Markov game (Littman, 1994) that includes a set of
shared world states, S; a set of learner actions, AL; a set of teacher
actions, A% and a transition function that maps previous states and
joint actions to next states, 7 (s, a*, a’) — s'. For example, the
world state could be Fido’s location in the yard, represented as x
and y coordinates. His available actions could be walking one tile
up, down, left, or right. The teacher’s actions could be giving
different rewards as feedback, f € Ay = [—1, 1]. Negative
numbers correspond to punishment and positive numbers corre-
spond to rewards. The absolute value of f reflects the degree of the
feedback. Thus praise for Fido would be positive and moderate (e.g.,
f= +0.5) while an electric shock would be negative and large (e.g.,
f =~ —1.0). Finally, the transitions would move Fido to new locations
in the yard based on the previous state and the action that he took.

At each timestep, ¢, the learner takes an action from a state, the
teacher responds to this action, and then they transition to a new
state. Thus, after 7 timesteps, there has been a history of interaction
between the two, i, = (g, @gs for S1» A1 f1s - - - » Spr Aps [).

Modeling Teaching and Learning

A learner’s behavior results from a history of interaction with
the environment and the teacher. Formally, a learning strategy, L:
h, = m,, specifies how a history of interaction produces a behav-
joral policy that maps states to actions, r,: s — a*. Meanwhile, a
teacher who has a target policy, 7", will have a teaching strategy,
T: h, — F,, that provides a feedback policy based on a history of
interaction. A feedback policy is how the teacher will provide
feedback in response to an action that a learner takes from a state,
F: (s,, a) — f.. Given a learning strategy £ and a target policy 7",
a teaching strategy can be better or worse depending on the
learning sequence m,.,; =(Tq, Ty, Mo, . . . , ) that it induces. In
particular, we assume that from a teacher’s perspective, it is better
when more of the target policy is learned earlier.

Our goal here is to understand how people teach with evaluative
feedback, which means characterizing what learner models peo-
ple’s strategies can teach. To do this, we can consider different
classes of learning models, £, that could be taught. Specifically,
we characterize two learning models: reward-maximizing (i.e.,
reinforcement) and action-signaling (i.e., communication).

Reward maximization. A learning agent that treats feedback
as a quantity to maximize is equivalent to algorithms studied in
reinforcement learning (RL; Sutton & Barto, 1998). Formally, we
can define a reward-maximizing learning strategy, £X™. The key
assumption of a reward-maximizing learner is that it treats feed-
back from the teacher as a reward to maximize. This means it
represents the value (i.e., maximum expected cumulative dis-
counted reward) of taking actions from states:

OG5 a) = f+ max El¥fur + Via + o lswal (D

where y € [0, 1] is the learner’s discount rate. A reward-
maximizing policy is simply one that maximizes the action-value
in every state:

M (s) = arg max Q(s, a), 2
acd(s)
for all s € S.
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RL studies different algorithms that calculate or estimate Q
based on histories of environment transitions and rewards. Because
the problem of positive reward cycles applies to any reward-
maximizing learning algorithm, we set aside the question of which
specific algorithm a learner implements in Experiments 1 and 2. In
Experiment 3, we consider two well-known classes of reward-
maximizing algorithms: model-free and model-based learning.
One motivation for investigating these two classes of models is
that they each capture two broad types of reward-maximizing
learning characterized in humans and animals. Model-free learning
aligns closely with theories of operant conditioning, whereas
model-based learning corresponds to goal-oriented planning based
on a model of rewards and transitions (Dayan & Niv, 2008).
Implementation details are included in Appendix B.

Action-signaling. A learning agent who treats feedback as a
signal of the correctness of an action can be modeled as perform-
ing inference over possible target policies given the teacher’s
feedback. Rather than being treated as a quantity to maximize,
feedback is diagnostic of an unknown variable: the teacher’s target
policy, w". Thus, we can draw on Bayesian models of social
cognition and language to model these inferences (Baker, Saxe, &
Tenenbaum, 2009; Loftin et al., 2014).

An action-signaling model, £AS, treats evaluative feedback as
signals. To estimate what the teacher’s target policy is, an action-
signaling learner has a generative model consisting of two compo-
nents: (a) the teacher’s target policy and (b) the history of interaction,
including the feedback. The probability of a policy 7" given a history
of interaction can be formally expressed as Bayesian inference:

P(r* | h) = H0 P(fil s, a, ") P(m"). 3)

In particular, P(f;|s, a, w") is how the learner expects the
teacher to give feedback as signals if =" were the target behavior.
Minimally, this could encode a feedback strategy in which the
teacher rewards when the action matches the target action in a state
(i.e., the action is correct) and punishes when it does not match the
target action (i.e., the action is incorrect).> The prior term, P(m"),
represents a learner’s belief that the teacher is trying to teach
policy " before any feedback is given. Now that we have spec-
ified the quantity computed by an action-signaling learner, we can
specify how it selects actions given a history of interaction 4,:

wS(s) = arg max >, P(a| 7', s)P(w' | h), “)
a€A(s) o’
where P(a|w’',s) = 1{m'(s) = a} is an indicator function for

whether a is the correct action for a possible target policy 7'. The
algorithmic details of the model are presented in Appendix B.

! For simplicity, we assume that state transitions and learners’ learned
policies are deterministic. A more comprehensive model of teacher—learner
dynamics that takes the noise induced by the environment, learner, and
teacher into account is conceptually straightforward.

2 For the purposes of distinguishing feedback as communicative versus
reinforcement, the exact form of the likelihood function is not particularly
important. In simulations and pilot studies, we found similar results when
piecewise linear functions or sigmoidal functions were used.
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Reward-Maximization, Action-Signaling, and Positive
Reward Cycles

Teaching a reward-maximizing learner requires creating and
modifying a system of incentives to motivate certain behaviors. In
contrast, teaching an action-signaling learner requires providing
signals that an agent can use to infer the intended target policy.
These two accounts make identical predictions in some situations.
For example, if the behavior being taught involves only choosing
one of several actions, such as pressing a specific lever once,
whether feedback is being used to incentivize or to signal cannot
be determined.

However, the two theories can diverge when giving feedback in
multistate, multiaction situations. For instance, consider the exam-
ple with Fido introduced at the beginning of this article, in which
he is being taught to follow a specific path to reach the house. A
simplified version of this is shown in Figure 1A. A teacher who
provides feedback as signals runs the risk of creating positive
reward cycles, sequences of states, actions, and feedback in which
a learner returns to an initial state (so, dg, 1, Ay, - - - » S, A, o) and
receives a net positive reward, F(s,, agy, s;)+, YF(s;, a;, s,) +
oo+ Y'F(s,, a,, 50) > 0 (Ng et al., 1999). The following example
provides some intuition: Suppose Fido’s owner is attempting to
signal that walking along the desired path toward the house or
going into the house is good, walking into the garden is bad, and
exiting the garden is good. In that case, she would reward the
correct actions (e.g., walking along the path to the house, exiting
the garden), and punish the incorrect actions (e.g., walking into
the garden). This poses a problem if Fido is trying to maximize
rewards. In that case, Fido will get more rewards by ignoring
the house entirely and attempting to return to an earlier part of the
path, either by going back along the path, or by going through the
garden and back onto an earlier position. In other words, Fido will
exploit a positive reward cycle. Figure 2 illustrates how this

Punish Reward Punish
83 05 i very -
H BT ooroning % ‘ .”7/, . .
Figure 1.

(B)

=
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phenomenon emerges from the interaction of different teachers
and learners.

In general, if people are using feedback as signals, positive
reward cycles are not inherently a problem and may even be useful
for conveying information. On the other hand, if people are using
evaluative feedback under the assumption that learners are reward-
maximizing, then positive reward cycles should not appear or be
sustained. If learners do begin cycling to maximize rewards, then
the teacher would adjust their feedback to remove them. Thus,
finding that people produce positive reward cycles or consistently
fail to remove them would support the action-signaling account
while providing strong negative evidence against the reward-
maximizing account. A more formal treatment of this argument
can be found in Appendix A.

When assessing the presence of positive reward cycles em-
pirically, there are several factors to consider about the teach-
er’s model of the learner. In particular, the learner’s discount
rate, planning horizon, and nonfeedback rewards will affect
whether positive reward cycles are present. In addition, the
teacher’s strategy may be affected by their own rewards distinct
from the motivation to teach. We discuss each of these factors
below.

Intermediate rewards. A reward-maximizing agent will ex-
ploit states and actions that lead to the greatest reward. As such, in
the Path-Following domain we consider in this article, positive
reward cycles largely come down to a teacher overincentivizing
actions that are an intermediate part of the target task, which will
be reflected in the pattern of feedback. This also means a teacher
can always remove positive reward cycles by reducing intermedi-
ate rewards. In addition, once an agent has learned the task it is no
longer taking actions that would receive punishment. As a result,
whether people reduce intermediate rewards is key to assessing if
feedback is being used as incentives.

(©)

Reward

Good! Great!
Do
Nothing

—» Intermediate Target Actions
== Final Target Actions

Path-following task. On each trial, the agent moves and then participants give their feedback. A: Dog

version. B: Child version. C: Intermediate and final target actions. See the online article for the color version of

this figure.
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Figure 2.

v=>| => Goal gl > Goal Goal RITTD = R > Goal
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Teacher uses feedback
as communicative
signals

Goal

Reward-maximizing Action-signaling
agent learns cumulative / \agent learns distribution
reward over policies

Does not learn
target policy

Learns target
policy

Feedback strategy and learner type interaction. A teacher rewards and punishes to teach a target

Punishments.

policy. For clarity, we show static schedules of feedback, but this analysis also applies in the dynamic case (e.g.,
Experiment 3). Left-side: The teacher rewards only for entering the goal and punishes for entering the garden
tiles. A reward-maximizing agent learns the cumulative expected reward (left branch; arrow length and color
correspond to magnitude and valence, respectively); an action-signaling learner attempts to infer the target policy
but is provided with insufficient information (right branch; arrow length corresponds to probability). Right-side:
A teacher rewards only for correct actions and punishes for incorrect actions. The action-signaling learner can
infer the target policy (right branch). But the reward-maximizing learner will want to exploit the positive reward
cycle (large gray arrows) in the teacher’s pattern of feedback and will not learn the target policy (left branch).
The reward-maximizing learner’s action value function, Qp, is calculated with y = .9. The action-signaling prior
is uniform: P(w") o 1. See the online article for the color version of this figure.

Whether intermediate actions are overincentiv-

have a bias for efficiency and not want to take unnecessary actions,

ized is relative to any punishments received to continue receiving
intermediate rewards. This leads to a second way for teachers to
remove positive reward cycles: Increase punishments such that it is
no longer worthwhile for the incentivized agent to collect inter-
mediate rewards. This corresponds to increasing punishments for
states and actions that are not part of the target policy.

Intrinsic learner rewards. The learner may have rewards
other than those provided by the teacher. For instance, Fido may

or he may actively want to play in the flower bed. In this article,
we focus on the case where these nonfeedback rewards are negli-
gible, however, future work will need to explore the interaction of
teaching rewards and environmental rewards.

Learner discount rate. Because a positive reward cycle
results from rewards and punishments that are integrated over
time, whether and how an agent trades off temporally close and
distant events is important. The learner’s discount rate must be
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high enough such that future rewards offset any earlier punish-
ments.

Fixed temporal horizon. Positive reward cycles can still pose
a problem even when an agent has a fixed number of steps in a
time period (i.e., teaching episode). For example, stepping through
a positive reward cycle and only then completing a task would
yield more rewards than simply completing a task and ending a
teaching episode.

Teaching costs. Our analyses here do not explicitly model
what occurs when it is costly for a teacher to provide rewards and
punishments. However, the influence of this factor on teacher
behavior would be reflected in the teaching strategy 7. For in-
stance, the teacher be less motivated to teach after many timesteps
of low progress. Future work will need to examine the influence of
such aspects of the teaching strategy.

Experimental Studies

Motivated by our analyses of evaluative feedback as reinforce-
ment and communication, we designed an agent-teaching para-
digm, the Path-Following task (Figure 1A and 1B), reminiscent of
the situations we have described. The teacher’s goal is to teach the
learner to go from the start state (bottom left) to the terminal goal
state (upper right) without going through the four tiles on the
bottom right. As shown in Figure 1C, this results in a “target
behavior” consisting of four actions in sequence. The first three
actions are “intermediate actions,” whereas the final action is a
terminal action that ends a teaching episode.

Experiment 1 tested whether people produced positive cycles
when delivering feedback for individual actions. In the studies in
Experiment 2, participants taught a single dog preprogrammed to
improve over time to see whether aspects of positive reward cycles
would persist across all stages of successful training. For the
studies in Experiment 3, participants trained agents that learned
from feedback in accordance with the reward-maximizing and
action-signaling models. This allowed us to assess how people
adapted their teaching strategies to learner behavior. Across the
studies we varied the particular algorithms (model-based, model-
free, action-signaling), random exploration, and agent type (dogs
and children).

Experiment 1: Rewarding and Punishing Isolated
Actions

In Experiment 1, participants provided feedback to learners who
performed isolated actions in the Path-Following task. This pro-
vides us with a static measure of participants’ feedback strategy
over the entire state-action space, providing an initial assessment
of whether people produce positive reward cycles. In addition,
Experiment 1b focuses on whether the findings of Experiment 1a
hold when feedback is presented as different types of rewards and
punishments to further validate our experimental design.

Experiment 1a

Method.

Participants and materials. Forty (18 female; 22 male) Am-
azon Mechanical Turk participants were paid $1.00 to participate.
One was excluded due to a technical error. This number of par-

ticipants was selected in advance. On each trial the dog started at
a tile, rotated to face one of the four directions, and walked onto
the adjacent tile (3,000 ms). Participants then provided feedback
ranging continuously from highly negative to highly positive with
the following anchor points: “a mild but uncomfortable shock™ to
scolding the dog (“Bad dog”) to “doing nothing” to praising the
dog (“Good dog!”) to “a few delicious treats”. Participants used a
draggable slider that was initialized at the midpoint of the scale
(“doing nothing”) and had the five values marked equidistantly
along the continuous scale. The instructions stated that the scale
should be seen as balanced, such that distances from the midpoint
of the scale were equivalently positive or negative. Participants
could only continue to the next trial after providing a feedback
response. Procedures were approved by the Harvard University
Committee on the Use of Human Subjects (protocol #IRB14-2016,
title: “A computational approach to human moral judgment”).

Procedure. Participants were told that they would assist in
training a “school of 24 distinct dogs” to “go into the house by
staying along the path and staying out of the garden.” The goal of
training is for each dog to be able to complete this task indepen-
dently. As there are nine tiles (four with two actions, four with
three actions, and one with four actions), the task consisted of 24
trials covering each combination of initial location, action, and
final location. Each trial showed a different color dog to emphasize
that distinct learners were being trained. Trial order was random-
ized with the requirement that no trial began where the previous
trial had ended to avoid suggesting a continuity between trials.
Participants were then asked to imagine they had placed the dog in
that location at the beginning of the trial. They had to answer
several comprehension questions correctly to start the task. One of
these included a free-response description of what the dog was to
be taught.

After completing the main task, participants were asked several
questions about their training responses and background. Also, to
assess how participants interpreted tradeoffs between punishments
and rewards, we asked them about the dogs’ preferences with
respect to the response scale. For eight sequences of punishments
and rewards, participants answered whether they thought the dog
would prefer the sequence, nothing, or both equally. The se-
quences tested were (a) scolding twice followed by praising twice,
(b) two scoldings followed by three praises, (c) two scoldings
followed by four praises, (d) one shock followed by one biscuit, (e)
one shock followed by two biscuits, (f) one shock followed by two
praises, (g) one shock followed by three praises, and (h) two
scoldings followed by one biscuit. The final page asked several
demographic questions and for feedback about the experiment.

Results. Our main question is whether participants’ feedback
contains positive reward cycles that a reward-maximizing learner
would exploit. We performed an analysis based on the marked
values (e.g., shock, scold, praise, biscuit) and dog preference
judgments, as well as a model-based analysis based on the numer-
ical value of feedback. Both analyses reveal that people’s feedback
contain positive reward cycles.

In addition, we report a clustering analysis that shows people
generally pursued one of two strategies. One corresponds directly
to action-signaling, whereas the other reflected the general per-
missibility/impermissibility of tiles. Finally, we show that partic-
ipants use the full range of the response scale while mainly
anchoring on the marked responses.
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Table 1
Experiment la: Dog Preference Question Responses (Counts
Out of 39 Participants)

Feedback sequence  Prefers nothing No preference Prefers feedback

2 scold + 2 praise 7 7 25
2 scold + 3 praise 7 0 32
2 scold + 4 praise 3 1 35
1 shock + 1 biscuit 16 7 16
1 shock + 2 biscuit 10 2 27
1 shock + 2 praise 20 3 16
1 shock + 3 praise 16 1 22
2 scold + 1 biscuit 10 4 25

Analysis of positive reward cycles. State-action feedback and
dog preference judgments (summarized in Table 1) allow us to
determine whether a participant “knowingly” produces positive
reward cycles. For example, if a participant’s responses would
allow the dog to walk back and forth between two adjacent tiles
and receive praise and biscuit as feedback, this would constitute a
positive reward cycle. Similarly, if responses led to a situation
where a dog could return to a location in four steps, receive scold,
praise, praise, praise, and the participant judged that this feedback
would be perceived as a net positive, then that would also be a
positive reward cycle. Figure 3A shows five cyclical trajectories
that we analyzed as well as the number of participants who
produced each. For the two-step cycles on the path tiles, we
counted it as a positive cycle if responses to each step were both
greater than zero. For the two longer cycles where garden tiles are
entered, we coded each response as a shock, scold, praise, or
biscuit if it was within 0.05 of —1, —0.5, 0.5, and 1.0, respectively.
We then determined if the participant gave a dog preference
judgment where that sequence (or one strictly less) would be
positive. Importantly, this allows us to determine positive reward
cycles without making assumptions about the numerical interpre-
tation of feedback or the discount rate.> Overall, this analysis
revealed that 36 out of 39 participants produced at least one
positive reward cycle (p < .001; binomial test).

Model-based analysis of positive reward cycles. We also per-
formed a model-based analysis of feedback to numerically assess
individual positive reward cycles. First, in our discussion of the
models, we considered a feedback strategy of rewarding for correct
actions and punishing for incorrect actions (i.e., a particularly
extreme version of action-signaling). This would produce a posi-
tive cycle starting from the lower left-hand corner and performing
the action sequence up, up, right, down, down, left. The aggregated
pattern of feedback revealed that on average, this series of actions
yielded a positive net reward of +1.20 (bootstrap-estimated 95%
CI [0.83, 1.61]; one sample ¢ test with w, = 0: #38) = 5.99, p <
.001) as shown in Figure 3B.

In a more general version of this analysis, we investigated
whether any positive reward cycle would be produced across a
range of discount rates. To do so, we calculated the reward-
maximizing policy for each participant’s pattern of feedback,
sampled a trajectory, and identified whether the trajectory returned
to a previously visited state. For y = .99, 38 of 39 participants
produced feedback that resulted in a positive reward cycle (p <
.001; binomial test). This is robust across a number of different
values of y as shown in Figure 3C.

HO, CUSHMAN, LITTMAN, AND AUSTERWEIL

Feedback function types. Previous human-machine interac-
tion studies have shown that different people use different training
strategies when giving RL agents rewards and punishments (Loftin
et al., 2014). Using each individual’s pattern of responses over the
state-action space, we investigated the extent to which participant
response patterns grouped into training strategies using a cluster-
ing analysis. Individual feedback patterns were represented as
22-dimensional vectors between —1 and +1 (actions from the
terminal state were excluded), and a dissimilarity matrix was
calculated using Manhattan distances. We then used a complete
linkage method for the hierarchical clustering analysis.

Figure 4A first shows the average feedback across all partici-
pants, whereas Figure 4B shows how the clustering procedure
breaks this down into two large, homogeneous clusters (n = 15
and n = 16) and several smaller clusters (n = 8). The average of
one of the large clusters closely matches the pattern of responses
we expected from the evaluative feedback as communication hy-
pothesis. That is, rewards indicate an action is correct while
punishments indicate an action is incorrect. In contrast, the average
of the other large cluster (on the right) does not resemble our
predictions for either evaluative feedback hypothesis. Rather, re-
sponses reflect the general permissibility/impermissibility of state-
types. For instance, walking onto a particular path tile is always
permissible even if it is not always optimal, so if a learner walks
onto a path tile but in the wrong direction, it will get rewarded.
Notably, this also produces salient positive cycles—for example,
the learner could just walk back and forth along the path. In
addition, participants’ use of this state-training strategy is not
attributable to a misunderstanding of the task because only five of
the 16 state training participants failed to explicitly mention a goal
of going to the house in a pretask free-response question.

Response scale usage. Although participants were given a
continuous scale on which to give feedback, 79% of responses
were within 0.05 of the five marked parts of the scale (—1.0, —0.5,
0.0, 0.5, 1.0). Only 10.5% of all responses were within 0.05 of the
default slider response of 0. This suggests participants anchored on
the marked portions of the scale, perhaps because they corre-
sponded to specific concrete outcomes for the dog. In addition,
participants used the full range of punishments and rewards, and
they used rewards and punishments equally—all state-action re-
sponses: M = —0.03; median = 0.00; SD = 0.67; one sample ¢ test
against mean of 0: #935) = —1.26, p = .21.

Experiment 1b

The design of Experiment la assumes that participants treat
different types of feedback like a shock, scold, praise, and biscuit
as being similar in kind. Namely, that all four types of feedback are
rewards and punishments that could be used either as reinforce-
ments or communicatively. However, a shock and biscuit are

3 In addition, note that the identified positive reward cycles would cause
problems when a reward-maximizing agent is not discounting and aware of
the fixed length of a training episode. For example, a learner that had a
horizon of six steps from the first state could plan to spend two additional
steps on the path tiles before entering the goal. With eight steps, an agent
could take the smaller loop through the garden before entering the goal
(i.e., up, up, right, down, left, up, right, right), whereas 10 steps would
allow a reward-maximizing agent to take the larger loop through the garden
before entering the goal.
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Figure 3. Experiment la: Positive reward cycle analysis. Our data reveal that people readily produce positive
reward cycles that can teach an action-signaling agent but not a reward-maximizing agent the target task. A:
Circular paths represent state-action sequences that could become positive reward cycles. Numbers indicate how
many participants “knowingly” produce a positive reward cycle along that path given a qualitative coding of
responses (e.g., as a shock, scold, nothing, praise, or biscuit) and dog preference judgments. Overall, 36 of 39
participants produced at least one of these positive reward cycles. B: Participants’ responses have numerical
values associated with them. This plots a histogram of the net numerical value of responses to the largest cycle
shown in Panel A, which we a priori posited would be produced by a simple action-signaling teacher. C: This
displays the proportion of participants whose responses produce a reward cycle for different discount rates, +y.
Discount rates are converted to 1/(1 — ), which can be heuristically thought of in terms of an equivalent finite
horizon since a higher y means temporally distant rewards are less discounted (LaValle, 2006). Portions of this
figure are adapted from Figure 4 in Teaching with rewards and punishments: Reinforcement or communication?
Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 920-925), by M. K. Ho, M. L.
Littman, F. Cushman, and J. L. Austerweil, 2015, Austin, TX: Cognitive Science Society. Copyright 2016 by

Cognitive Science Society. Adapted with permission.

canonical reinforcements, whereas a scold and praise are canonical
communicative actions. As a result, it is possible that participants
conceptualize the scale as a mixture of communicative and rein-
forcing feedback, which would pose a problem for our analyses.
To ensure this is not the case, we replicated Experiment la but
with either purely reinforcement or purely communicative labels
on the response scale.

Method and procedure. Eighty participants were recruited
via Amazon Mechanical Turk to participate and were each paid
$2.00. We used the PsiTurk experimental platform (Gureckis et
al., 2016). The same procedure as Experiment la was used
except we separated participants evenly into two conditions. In
the reinforcement-scale condition, participants were given a scale
with the original extreme values (shock and biscuit) but the inter-

mediate values were replaced with fap and rub. In the
communicative-scale condition, the original moderate values were
used (scold and praise) and the extreme values were replaced with
harsh scold and strong praise. The images used are shown in
Figure 5.

For reinforcement scale, we also modified the dog preference
questions in which the following sequences were compared to no
feedback: 1 tap + 1 rub; 1 tap + 1 shock + 4 rub; 1 shock + 1
tap + 4 rub; 1 shock + 1 biscuit; 1 shock + 2 rub; 1 shock + 2
biscuit; 1 shock + 3 rub; 2 tap + 1 biscuit; 2 tap + 3 rub; 2 tap +
4 rub; 2 shock + 4 rub. Analogous preference questions were
asked for communicative scale. Experimental procedures were
approved by the University of Wisconsin-Madison Education and
Social/Behavioral Science IRB (ID #20170830, title: “Exploring
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Figure 4. Experiment la: Feedback function analysis. Participants’ global patterns of feedback accord more
with action-signaling than reinforcing. A: The average feedback function over all participants. The arrow-length
denotes response magnitude, whereas color denotes valence (blue/solid line = positive; red/dotted line =
negative). B: Results of hierarchical clustering of participants’ responses with the average teaching function of
the two largest clusters. These correspond to “action-signaling” (left) and “state training” (right). Portions of this
figure are adapted from Figure 4 in Teaching with rewards and punishments: Reinforcement or communication?
Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 920-925), by M. K. Ho, M. L.
Littman, F. Cushman, and J. L. Austerweil, 2015, Austin, TX: Cognitive Science Society. Copyright 2016 by
Cognitive Science Society. Adapted with permission. See the online article for the color version of this figure.

human and machine decision-making in multi-agent environ-
ments”).

Results. We found no qualitative differences between the two
conditions. This was determined using the judgment-based analy-
sis reported in Experiment la as well as additional quantitative
analyses.

As in Experiment 1la, the state-action feedback and dog prefer-
ence judgments provided by participants allow us to assess
whether they “knowingly” produced positive reward cycles. Using
this metric, we found no difference in the number of participants
whose responses and judgments implied any positive reward cycle
(reinforcement scale: 36 of 40; communication scale: 35 of 40;
Fisher’s exact test: odds ratio = 0.78, p = 1.0). There were
similarly no detectable differences based on whether we looked at
cycles involving only path tiles (reinforcement scale: 28 of 40;
communication scale: 27 of 40; x? test for independence: x*(1) =
0.00, p = 1.00) or those involving path and garden tiles (reinforce-
ment scale: 27 of 40; communication scale: 22 of 40; Xz(l) =0.84,
p = .36).

We also compared numerical responses (coded to range over [—1,
1]) for each state and action between the two conditions. A mixed-
effects linear model with condition as a fixed effect and participant
intercept and state-action intercept as random effects were fit. Tests

with Satterthwaite’s approximation show there was no significant
difference in condition (B = 2.9—10 2, SE = 2.9—10 %¢(78.0) =
1.01, p = .32), indicating that participants generally did not treat the
two scales differently.

Discussion. In these experiments, participants trained different
learners by giving feedback for isolated actions. Several key results
emerged: First, teachers incentivized intermediate successes to a de-
gree sufficient to generate positive reward cycles. Because positive
reward cycles tend to prevent reward-maximizing learners from at-
taining the target policy, this indicates that people do not use rewards
and punishments as incentives for reward-maximizing learners, but
rather as a form of communication. Second, participant feedback
clustered into two general types: action-signaling and state-training.
This first type reflects the predicted tendency to use rewards and
punishments as signals for the correctness and incorrectness of ac-
tions. In contrast, the state-training pattern of feedback was not
originally predicted by either model. It may be that these teachers
attempt to teach intermediate policies (e.g., “stay on the path”) before
teaching the complete policy. Alternatively, teachers may assume that
the learner has a state-type representation of path- and garden-tiles and
attempt to leverage this during teaching. Finally, in Experiment 1b,
we confirmed that in this paradigm, participants use actions that are
superficially reinforcing (e.g., shocks) and communicative (e.g.,
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praise) actions similarly. This validates the use of the mixed scale in
Experiment 1a, which we use in Experiments 2 and 3.

A feature of these experiments is that they eliminate any history
that a teacher may have with a learner. On the one hand, this
permits comparison of different participants’ responses to the same
learner action taken independent of previous or future actions. On
the other hand, teaching is interactive, ongoing, and contextual and
involves a teacher responding to a learner’s entire history of
previous behaviors in different situations and not just decontextu-
alized actions. Our remaining studies investigate whether these
general results hold in more realistic and interactive contexts.

Experiment 2: Teaching Improving Agents

In Experiments 2a and 2b, participants taught a single dog
preprogrammed to improve over time. This allowed us to hold the
interactions between a teacher and the learner constant. In partic-
ular, we were interested in whether, as the learner progressed,
teachers would reduce their rewards to the point where they were
no longer overincentivizing intermediate actions. In other words,
would teachers eventually stop producing positive reward cycles?
If, by the time the learner acquires the task, teachers’ feedback
constituted an incentive structure consistent with the desired task
and without positive reward cycles, then the results of Experiment
1 would be weaker evidence against the reward-maximizing hy-
pothesis. However, if participants still produce positive reward
cycles even when the target task was learned, then we would have
additional evidence that people use rewards and punishments as
communication.

Experiment 2a

Method.

Participants and materials. We used the same interface as
Experiment 1. Forty Amazon Turk participants (16 female; 24
male) were paid $1.00 and told they would receive a bonus up to
$0.75 (although all received the full $0.75 bonus). Three partici-
pants’ data were excluded from analysis because of technical
problems. Participants were told they would train a single dog over
8 game days. Each day the dog started at the lower left tile and the
day lasted six steps or until the dog entered the house tile. The

dog’s performance increasingly reflected the target policy over
the first 5 days (regardless of the participant’s feedback) and
matched the target policy exactly on the 6th and 7th days. Specif-
ically, the dog’s behavior on Days 1 through 7 was e-greedy,
meaning that it chooses an optimal action in a given state with
probability 1 — € or any of the other (valid) actions with proba-
bility €/(# of suboptimal valid actions). € was 1.0, 1.0, 0.45, 0.1,
0.1, 0.0, and 0.0 for Days 1 to 7, respectively. The actions the dog
took were sampled once for all participants, so all participants
were shown the same specific actions. On the 8th day, the dog
performed the actions of the a priori defined positive cycle from
Experiment 1 (up, up, right, down, down, left).

Procedure. Participants were told they would train a single
dog over the course of 8 game days. They were also told that their
bonus would be contingent on the dog’s solo performance, which
we would test by having the dog do the task on its own three times
after the experiment. At the end of each “game day,” participants
rated the dog’s current ability using a continuous slider coded from
0 to 1, and after Days 2-8, its improvement compared to the
previous day also using a continuous slider from Experiment 1a.

Following completion of the task, participants were asked,
“How responsive did you feel the dog was to your feedback?,”
“Overall, how good do you think you were at training the dog in
this task?,” and “Do you have experience training dogs?” Exper-
imental procedures were approved by the Harvard University
Committee on the Use of Human Subjects (protocol #IRB14-2016,
title: ““A computational approach to human moral judgment”).

Results.

Perception of task. Participants believed that they were teach-
ing the dog effectively and did not suspect that their feedback had
no effect on the dog. All responses to a 5-point Likert scale about
dog responsiveness were above 1, which was labeled “not respon-
sive at all” (M = 3.45, SE = 0.11). Further, all 37 responses to
“Overall, how good do you think you were at training the dog in
this task?” were above 4 on a 7-point Likert scale (M = 5.48, SE =
12).

Positive reward cycles and diminishing rewards. While
teaching a single learner over time, most participants’ feedback
functions showed positive cycles. The final day in the dog training
task had the dog take the six steps corresponding to the extreme
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action-signaling positive reward cycle. Although smaller, the av-
erage total reward for these six steps was still a positive value
(Figure 6A; M = +0.67; bootstrap-estimated 95% confidence
interval [CI] [0.31, 1.06]; one-sided ¢ test: #(36) = 3.53, p < .001).
Note that participants may have produced more positive reward
cycles if we had tested every combination of current state, action,
and next state, as in Experiment 1. However, we did not test all
combinations so that we could test how people taught when
interacting with a single learner.

Consistent with smaller and fewer positive cycle values on the
final day, rewards for correct steps declined but remained positive
over Days 3 to 8 (Figure 6B). Over those rounds, the learning
agent performed each intermediate target action at least once. We
analyzed how responses to intermediate actions (and not the final
action) changed over time (e.g., as shown in Figure 1C) and across
the different steps using a mixed effects linear regression with day,
intermediate target action, and their interaction as fixed effects,
and intercepts, day, action, and day-action interaction as random
effects across participants. Tests of significance were performed
using Satterthwaite’s approximation. The interaction between in-
termediate target action and day was not significant ( = —2.7 X
1073, SE = 3.9 X 1077, #(382.00) = —0.69, p = .49). The change

in reward by day was negative—p = —3.4 X 1072 SE = 9.0 X
1073, #(39.00) = —3.71, p < .001—and the change in reward by
intermediate target action was positive—B = 5.7 X 1072, SE =
4.2 X 1072, #82.00) = 2.81, p < .01. Thus, people lowered
rewards over time and gave greater rewards for actions closer to
the goal.

Rewards on the final day were still positive. We fit a mixed-
effects linear model to only the final day intermediate target
actions. Intercepts and action were random effects across partici-
pants, and action was a fixed effect. The intercept of the model was
positive—B = 0.65, SE = 4.3 X 1072, #37.00) = 15.08, p <
.001—indicating that although intermediate rewards decreased
over time, they did not reach zero. This contributes to the presence
of net positive cycles on the final day (Figure 6B). One might
wonder whether rewards for intermediate actions would decrease
to zero if we tested participants for more days with perfect learner
performance. This is examined in Experiment 2b.

Tracking learner ability and improvement. Figure 6C depicts
mean participant judgments of ability and improvement over days
compared to the dog’s true ability and improvement. Participants
can only observe the actions, leaving the precise policy used by the
dog uncertain. Despite this, dog ability judgments tracked the
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Figure 6. Experiment 2a results. We find that when providing feedback over time, participants continue to
produce positive reward cycles. A: Histogram of final game day net cycle values. B: Average rewards for each
of the four correct steps on each day. Different target actions are designated by different shapes. C: Average
ability (green/dark grey) and improvement (blue/light grey) judgements over the eight game days (solid lines)
along with the true ability and improvements in terms of 1 — € (dotted lines). This indicates participants can track
ability as well as changes in ability. From Figure 5 in Teaching with rewards and punishments: Reinforcement
or communication? Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 920-925),
by M. K. Ho, M. L. Littman, F. Cushman, and J. L. Austerweil, 2015, Austin, TX: Cognitive Science Society.
Copyright 2016 by Cognitive Science Society. Adapted with permission. Error bars are bootstrapped 95%
confidence intervals. See the online article for the color version of this figure.
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value of 1—¢ extremely closely—results of Fisher transformed
Pearson r two-sided ¢ test: M r = .95; 95% CI [.94, .97]; 1(36) =
22.98, p < .001. Dog improvement judgments tracked day-to-day
changes in € but more weakly—results of Fisher transformed
Pearson r two-sided ¢ test: M r = .44, 95% CI [.29, .56]; #(36) =
5.67, p < .001. Thus, when teaching via evaluative feedback,
teachers can track the current state of the learner’s policy and
changes to that policy over time (Figure 6C).

Experiment 2b

Experiment 2a showed that people only slightly decrease their
rewards over time given perfect performance. However, the
learner only performed the perfect sequence of actions two days in
a row. Experiment 2b tested whether teachers would completely
remove rewards given a longer series of perfect days.

Method.

Participants and materials. Forty-one Amazon Mechanical
Turk workers (13 female, 28 male) participated, with no exclu-
sions. The structure of the experiment was the same as Experiment
2a but with more game days. Participants trained learners that
improved over Days 1 to 4 (¢ = 1.00, 1.00, 0.55, 0.10), performed
perfectly over Days 5 to 11, performed the six-step cycle on Day
12, and then regressed on Day 13 (¢ = 0.55).

Procedure. Participants were given the same instructions as in
Experiment 2a. Experimental procedures were approved by the
Harvard University Committee on the Use of Human Subjects
(protocol #IRB14-2016, title: “A computational approach to hu-
man moral judgment”).

Results.

Final positive reward cycles and diminishing rewards.
Figure 7A shows the distribution of net cycle values on Day 12,
when the learner performed the six-step cycle. After 7 days of
performing the correct intermediate actions, the average net cycle
value was not significantly different from 0—M = +0.19,
bootstrap-estimated 95% CI [—0.17, 0.55]; one-sided ¢ test:
#(40) = 1.03, p = .15.

From Days 2 to 12 the dog performed intermediate actions. Over
the course of these game days, participants’ rewards diminished
over the course of the experiment but did not disappear com-

(A) Day 12 Net Cycle Value (B)
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pletely. Figure 7B shows the change in reward magnitudes for the
three intermediate target actions as well at the final target action.
We fit a mixed-effects linear model to feedback for intermediate
target actions over these game days with the same fixed/random
effects and tests as the analysis in Experiment 2a. Both the inter-
cept, B = 0.89, SE = 4.8 X 1072, #(41.27) = 18.41, p < .001, and
fit for day, B = —4.7 X 1072, SE = 74 X 1073,
1(41.28) = —6.27, p < .001, were significant, whereas action, 3 =
2.4 X 1072, SE = 1.6 X 1072, #61.98) = 1.52, p = .13, and its
interaction with day, B = —5.1 X 107 SE = 2.0 X 1077,
1(249.29) = —0.26, p = .80, were not.

In addition, feedback for intermediate target actions on the 12th
day were still positive. We fit a mixed-effects linear model with
intercepts and action across participants as random effects and
action as a fixed effect. The intercept was above zero, 3 = 0.43,
SE = 5.4 X 1072, #(41.24) = 7.78, p < .001. Thus, intermediate
rewards decrease steadily over time but do not reach zero even
after the learning agent performs intermediate target actions per-
fectly for 10 game days and the complete sequence for 7 game
days.

Judgments of ability and improvement. Participants tracked
ability and improvement during the initial game days (1-5), during
which € was changing. Ability judgments correlated with true
ability—results of Fisher transformed Pearson r two-sided # test:
M r = .93, 95% CI [0.91, 0.95]; #(40) = 23.90, p < .001—and
improvement judgments correlated with true improvement—
Fisher transformed Pearson r two-sided ¢ test: Mean r = .49, 95%
CI [0.35, 0.61]; #(40) = 6.48, p < .001.

Discussion

The results of Experiments 2a and 2b further support the com-
municative hypothesis. Agents in these experiments improved over
time as they were given feedback, yet participants continued to
reward them for intermediate successes. Participants did not en-
tirely remove rewards for intermediate target actions after 2 (Ex-
periment 2a) or 7 days (Experiment 2b) of performing the task
perfectly. Continuing to reward intermediate target actions often
leads to positive reward cycles, as we discuss in the General
Methods section. The one positive reward cycle that we examine
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Figure 7. Experiment 2b results. Unlike in Experiment 2a, in which the target task was performed perfectly for
fewer consecutive days, here it is clear that rewards eventually decrease over time. By Day 12, the net extreme
cycle value is not detectably different from zero, as shown in Panel A. However, as shown in Panel B, while
positive feedback to the dog becomes lower for all state-actions, it does not entirely disappear. Error bars are
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directly in these experiments is the extreme, six-step cycle pre-
dicted by a strict version of the action-signaling model. We find
that after 7 game days, the net reward for this cycle is no longer
significantly different from zero, however, this does not rule out
the possibility of other positive reward cycles. Moreover, from the
perspective of using feedback as incentives, positive reward cycles
can be easily avoided by quickly reducing rewards such that even
minimal punishments can offset intermediate rewards. That is, if
people were actively removing positive reward cycles, they could
simply ensure the cycle results in a negative reward.

In addition, we find that people can reliably track a learner’s
policy with respect to a target policy. This supports the assumption
found in much of the teaching literature that that teachers track
learners’ ability and changes in ability—that is, improvement
(Wood, Bruner, & Ross, 1976). However, we also find that people
more accurately track ability than improvement based on the same
information. This may be because more observations (i.e., learner
actions) are needed to update a representation of improvement as
compared to ability. More broadly, previous work has used similar
formalizations to model how people reason about others’ mental
states, such as beliefs and goals (Baker, Jara-Ettinger, Saxe, &
Tenenbaum, 2017). The correspondence between judgments and
1 — € suggest that models of social reasoning can be expanded to
include how people reason about an agent’s ability and improve-
ment by modeling ability as distance to a target policy and im-
provement as convergence to that policy. One possibility is that
ability judgments are based on the distance between the learner’s
policy (as inferred by the teacher) and the teacher’s desired policy
(improvement as the change in this value). We leave further work
on how people judge the ability of other agents to future work (see
Gerstenberg & Goodman, 2012, for a promising approach).

Experiment 3: Interactively Teaching with Reward
and Punishment

Experiments 2a and 2b tested how teaching proceeds when
everything goes as planned (i.e., when the learner learns what the
teacher wants). However, a learner may not learn the desired
policy for various reasons, such as misunderstanding the teacher’s
intention, exploiting rewards, or misinterpreting the teacher’s strat-
egy. When this occurs, teachers may or may not adapt their
teaching strategy to the particular learner. For example, when
faced with a reward-maximizing learner, people might adapt their
feedback such that the exploited net positive cycles are eliminated.

In this experiment we investigated how people trained learners
implemented with reward-maximizing or action-signaling algo-
rithms. This provides additional confirmation that people can train
action-signaling agents, but more importantly, it allows us to
determine whether participants will adapt their teaching strategy in
response to positive reward cycles being exploited. To understand
how people interactively teach with reward and punishment, we
investigated how participants would train several classes of learn-
ing agents under different settings. We ran three different experi-
ments with differing parameterizations and framings. In Experi-
ment 3a, learning agents depicted as dogs performed actions
according to the currently learned policy 80% of the time and
otherwise explored by selecting an action at random. Although
random exploration can facilitate learning, it makes it more diffi-
cult for a teacher to track the state of learning. To see if similar

results would appear without random exploration, Experiment 3b
also depicted learners as dogs, but the algorithms never took
random exploratory actions.

Finally, all of our experiments so far have focused on people
teaching dogs. One might wonder if similar results would obtain
when people are teaching children with rewards and punishments.
This would lend support for a more general representation for
teaching with rewards and punishments. To examine this, Exper-
iment 3¢ had the same design as 3a, but with learning agents
depicted as preschool children.

Reward-Maximizing and Action-Signaling Conditions

How learning unfolds in real time depends crucially on the
specific learning algorithm a teacher is interacting with. Thus, in
all three studies, we ran six between-participants conditions with
different learning algorithm implementations. Four of these were
reward-maximizing algorithms and two were action-signaling al-
gorithms. For the reward-maximizing conditions, we chose to
focus on two classes of algorithms that have been widely investi-
gated in human and animal work on decision-making and value
learning: Model-based and model-free algorithms (Dayan & Niv,
2008). These two classes of learning mechanism have been used to
model goal-directed and habitual learning in the human brain,
respectively (Glédscher, Daw, Dayan, & O’Doherty, 2010). Model-
free algorithms roughly correspond to habitual learning since they
learn about reward contingencies and the future value of actions
through trial and error. In contrast, model-based algorithms ex-
plicitly reason about state transitions and outcome structure of the
environment, allowing them to engage in goal-oriented planning.
During learning, this means that given a schedule of feedback, a
model-free learner will acquire the reward-maximizing policy
more slowly, as it must learn the correct “habit” at each state. A
model-based learner, by contrast, can immediately update its be-
havior for all states and optimally plan if it detects changes to
feedback.

The learning dynamics of model-free and model-based algo-
rithms are also both sensitive to what their default expectations
about the world are—that is, how they are initialized. For instance,
if a reward-maximizing learner is optimistically initialized, it will
assume unvisited states have high value and want to test them
before exploiting visited states. In contrast, to a neutrally initial-
ized learner, unvisited states to have a low or no value. As a result,
it will “take what it knows it can get” and tend to exploit actions
that it has already experienced as valuable. Previous work has
shown that people tend to have an optimism bias when evaluating
potential events (Weinstein, 1980) and that this can help rational
decision-makers with limited resources perform better in some
environments (Neumann, Rafferty, & Griffiths, 2014). In RL,
optimistic initialization enables an agent to more efficiently learn
the optimal reward-maximizing policy (Sutton & Barto, 1998). To
determine how these dynamics affect teaching by evaluative feed-
back, we included neutral and optimistic initialization conditions
of both the model-free and model-based algorithms.

The action-signaling algorithms implement Bayesian inference,
as described in the General Methods section. Recall that the model
can be expressed as update that combines the feedback likelihood
and policy prior: P(1"|h) o P(h|w")P(w"). The prior over policies
encodes the learner’s expectations over possible policies that a
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teacher could be attempting to teach, and therefore plays an im-
portant role in learning. In the studies here, we tested two different
policy priors. The first is a simple uniform prior over all policies,
which considers all possible policies equally likely (uniform prior
condition). This assumes very little about the structure of the envi-
ronment or the teacher’s representations. The second prior places a
stronger constraint on target policies: only policies optimal for a world
with any combination of +1, —1, and O reward-valued tiles are
considered (state-reward prior condition). This second prior builds
naturally on the state-action structure of the task and similar ap-
proaches have been used in related machine learning work (Loftin et
al., 2014). At the end of this article, we discuss the possibility of
having even richer policy priors that would permit hierarchical learn-
ing in teaching by evaluative feedback settings.

Summary

In short, we report the results of three studies, each of which has six
conditions: optimistic and neutral model-free, optimistic and neutral
model-based, and uniform/state-reward prior action-signaling. Figure
8 shows how these learning algorithms relate to one another, and
for Experiment 3a, we report simulations to illustrate their respec-
tive learning dynamics under idealized teachers. Details of all the
implementations are included in Appendix B.

Experiment 3a: Teaching Exploring Dog Learners

In Experiment 3a, participants trained learners who learned a policy
in response to feedback. The agents executed the learned policy 80%
of the time and otherwise explored by selecting an action at random.

Method.

Participants and materials. One-hundred and 80 Amazon
Mechanical Turk workers (83 female, 96 male, one other) partic-
ipated in the experiment.

Participants were placed into one of six conditions: neutral
model-free, optimistic model-free, neutral model-based, optimistic
model-based, uniform prior action-signaling, or state-reward prior
action-signaling. In the model-free conditions, we used a standard
model-free algorithm—Q-learning with replacement eligibility
traces (Singh & Sutton, 1996)—with a learning rate (o) of 0.9
and an eligibility trace decay rate (A) of 0.5. The neutral
model-free algorithms were given an initial value function with
all entries set to 0, while optimistic model-free learners were
given one with all entries set to +3.5. These initialization
values were chosen after testing their performance in simula-
tions to ensure that such agents could be taught within the
constraints of the experiment.

In the model-based conditions, learners are given the transition
function of the environment and use it to speed learning by
generalizing the rewards given by the participant for different
actions using the world’s transition function. State-action reward
values were updated with a learning rate of 0.9. The neutral
model-based learners were initialized with a reward function with
all entries set to 0.0, whereas the optimistic model-based learners
had reward entries set to +1.0. On each trial, the current value
function was calculated using value iteration (Sutton & Barto,
1998). These parameter values were also chosen by finding Those
That Could X Trained X Simulated Teachers.

The learning algorithms of the two action-signaling conditions
used different initial priors over reward functions and updated their
beliefs of the target policy as specified in Appendix B. The
uniform signaling condition had a uniform distribution over all
possible target policies " (2592 unique policies), whereas the
state-reward signaling condition has a policy distribution derived
from a uniform distribution over state reward functions (398
unique policies). The feedback-likelihood function used was sig-
moidal with the slope parameter (k) set to 2.

Learning from

Evaluative Feedback

Reward-Maximizing

Model-Free Algorithms
(e.g. Q-learning, SARSA)

Neutral
Reward

Neutral Optimistic
Value Value

Initialization Initialization

Model-Based Algorithms

Action-Signaling

Uniform Prior State-Reward Prior

over Policies over Policies

Optimistic
Reward
Initialization Initialization

Figure 8. Types of learning from evaluative feedback that includes the conditions implemented in Experiments

3a, 3b, and 3c.
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We implemented each algorithm in the browser. Because par-
ticipants primarily used the anchored values in the previous ex-
periments, the response interface was simplified from the contin-
uous slider to five buttons corresponding to shock, scold, do
nothing, praise, and biscuit. Otherwise, the interface was the same
as the one used previously.

Procedure. Participants trained a virtual dog for 10 game days
and each ended after 10 steps or once the dog reached the house.
They were told the dog would learn the task as they gave it
feedback and that it would appear at the beginning of the path on
each day. The instructions indicated that a bonus was contingent
on how well the dog performed on its own following the task. On
each trial, the learner acted according to a e-greedy policy,
selecting an optimal action as dictated by their current policy
with probability 0.8 and chose a different valid action with
probability 0.2/(# of suboptimal valid actions). Participants
gave feedback and the algorithms then updated the learned
policy with the participant’s response before performing the
next action. Experimental procedures were approved by Brown
University’s Research Protection Office (protocol #1505001248, title:
“Exploring human and machine decision-making in multi-agent
environments”).

Simulations. To provide a baseline for interpreting the human
experiment, we tested several simulations of this paradigm. For
each learning algorithm, we simulated 1,000 teachers with one of
two feedback policies that did not change over the course of

Simulated Teaching of
Exploring Learners

training. The first was a characteristically incentivizing feedback
strategy that punished moderately for entering the garden or walk-
ing backward on the path and rewarded highly when the goal was
entered via the path. The second was a characteristically signal-
ing feedback strategy that rewarded moderately for leaving the
garden or going along the path, rewarded highly when the goal
was entered via the path, and punished moderately otherwise
(see Figure 9). These patterns of feedback were given to the
same learning algorithms (model-based, model-free, and action-
signaling) as human participants with the same probability of
randomly choosing actions (0.2). This allowed us to anticipate
the effectiveness of different teaching strategies with different
learners, confirm that teaching is possible within the constraints
of the experiment, and qualitatively analyze each model’s con-
sistency with participant teaching behavior.

In particular, we note that the incentivizing strategy is able to
teach all of the different learning algorithms, including the action-
signaling agents. Among the different reward-maximizing algo-
rithms, there are differences in the speed of learning (e.g., neutrally
initialized agents learn faster than optimistically initialized ones,
and model-based agents typically learn faster than model-free
ones). However, they all eventually learn the target policy. In
contrast, the signaling teaching strategy is primarily effective for
action-signaling agents. The neutrally initialized, model-free agent
performs noticeably better than the other reward-maximizing

Experimental Results

Incentivizing Signaling
o | < con o | <gof con Exploring Dog Non-Exploring Dog Exploring Child
T ol Teaching Teaching Teaching
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Figure 9. Steps-per-day by day of simulation (first two columns) and Experiments 3a, 3b, 3c (last three
columns). Simulated teachers gave (stationary) feedback to the six types of learners in either a characteristically
incentivizing or signaling manner. This demonstrates that given the right pairing of teacher and learner strategy,
it is possible to successfully teach within the parameters of our task. In all three experiments, people easily taught
the action-signaling agents (top row) but often struggled to successfully teach the reward maximizing agents
(bottom two rows). This is consistent with their use of feedback as signals rather than simply to incentivize
(column 2). See the online article for the color version of this figure.
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learners because it exploits known rewards and does not explore
the space as much as its counterparts.

Results.

Final trained behavior. Participants could effectively train
both action-signaling learners but were unable to teach the com-
plete task to any of the reward-maximizing learners (model-free or
model-based with neutral or optimistic initializations). This was
due to the persistence of positive reward cycles in participants’
feedback that reward-maximizing agents were able to exploit.

Reward-Maximizing
Model-Based
Neutral Initialization

(A)

Goal

19~

it
El

tart

(B) Model-Free
Neutral Initialization

Model-Based
Neutral Initialization

0.64{0.25 0.61 0.82(0.21  0.34
- Goal — Goal
0.36 0.14 0.18 0.45
0.65 0.46 0.77 0.36
1‘0.16 0.31‘_1 I 0.11{054 1 0.05
0.20 0.23 0.12 0.06
[c:.73 0.10 0.90
0.27[0.84 _ 0.06 0.10[1.00

Model-Free Model-Based
Optimistic Initialization Optimistic Initialization

0.72(0.38  0.26 Goal 0.82(0.42 0.22] Goal
0.28 0.36 0.18 0.36

0.70 0.19 0.78 0.21

I 0.10 0.]24 10.11 0.27_1 0.07

0.20 0.08 0.11 0.14

0.81 0.15 0.87 0.15

[0.19 0'462_1..0'23 [0.13 g&

Figure 10A shows two representative example trajectories pro-
duced during the ninth day of the experiment that exemplify the
difference between the reward-maximizing and action-signaling
conditions. Here we further analyze the differences in final trained
behavior between the different conditions by looking at whether
participants could teach agents the subtask of staying on the path
and teach the entire task.

We first confirmed that participants in all conditions could teach
learners the subtask of walking along the path (but not necessarily
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Figure 10. Experiment 3a. A: Example experimental trajectories from the ninth game day of training for one
participant in the action-signaling (uniform prior) condition and one from the model-based (neutral initialization)
condition. Curves with arrows represent steps taken by the learner over that day, and numbers indicate teacher
feedback. Note how intermediate rewards are informative for the action-signaling learner but are exploited by
the model-based learner seeking to maximize rewards. B: Proportions of learner actions from path and
path-adjacent states by condition (averaged over participants) on the final day of training. By the final day, the
dogs generally learn to stay on the path, but only those trained in the action-Ssgnaling conditions consistently
complete the task by entering the goal (home) state. Note the different distributions of actions in the state to the
left of the goal state. See the online article for the color version of this figure.
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Figure 11. Path occupancy for Experiments 3a, b, and c¢. Proportion of path occupancy by day showing that

participants in different conditions were equally successful at teaching learners to stay on the path (but not
necessarily reach the goal). Error bars are bootstrapped 95% confidence intervals. See the online article for the

color version of this figure.

entering the house) by the final day (see Figure 11). To do so, we
investigated what proportion of states were path states (i.e., the
“path occupancy”) by day and condition for the last 4 days of
training. We fit mixed effects logistic regression models with
intercept and day as a random effects across participants, and day
and condition as fixed effects. Including condition as a fixed effect
did not improve the model according to a likelihood ratio test,
X>(5) = 4.69, p = .45. This indicates that in the final four days,
success in teaching the learner to stay on the path was not affected
by condition.

Given that the learner stays on the path, fewer steps-per-day is
a measure of teaching success. The design of the task limits
steps-per-day to being between 4 and 10, as well as even numbers
due to the topology of the task. Figure 9 shows steps-per-day for
each condition in Experiment 3a. To analyze differences in teaching
the entire task, we operationalized training success on a day as
steps-per-day being less than seven.* We then fit a mixed effects
logistic regression model with the same random and fixed effects as
in the previous path occupancy model and tested the estimated pa-
rameters with Wald Z tests. Planned contrasts were between the
action-signaling and reward-maximizing conditions, between model-
based and model-free reward-maximizing conditions, between neutral
and optimistic initialization reward-maximizing conditions, and be-
tween uniform and state prior action-signaling conditions. These
contrasts were chosen to assess the primary distinction between using
rewards as signals versus incentives as well as to determine additional
differences between the subtypes (see Figure 8). Participants in the
action-signaling conditions were more likely to successfully teach the
entire task than those in the reward-maximizing conditions (8 = 0.35,
SE =93 X 1072, Wald Z = 3.76, p < .001) and were more able to
do so over time (Action-Signaling/Reward-Maximizing X Day: 3 =
7.0 X 1072 SE = 1.8 X 1072, Wald Z = 3.80, p < .001).

Within the reward-maximizing conditions, participants teaching
model-based learners were less successful than those teaching
model-free learners (3 = —0.48, SE = 0.19, Wald Z = —2.61,
p < .01), and those teaching neutral learners were more successful
than those teaching optimistic learners (B = 0.46, SE = 0.19,
Wald Z = 247, p < .05). Finally, between the two action-

signaling conditions, those teaching learners with a uniform prior
over policies were more successful than those teaching state prior
learners (f = 0.58, SE = 0.20, Wald Z = 2.87, p < .01). Fixed
effect parameter estimates are summarized in Table 2.

To summarize, an analysis of trained behavior in Experiment 3a
reveals that teachers can effectively teach intermediate actions to
all learners, but only those teaching action-signaling learners could
teach the full task. Specifically, rather than completing the task, the
reward-maximizing learners would exploit teacher’s path rewards
without entering the house.

Feedback for intermediate actions over time. A key question
is whether participants change their feedback in response to the
type of agent they are teaching. In particular, if they are sensitive
to intermediate rewards being exploited, they would reduce those
rewards or change their distribution over actions (see Figure 12).
We compare intermediate rewards over time between conditions
and find that participants do not reduce them more when teaching
reward-maximizing agents. Indeed, we find that there is a slight
bias to give model-based agents more rewards for intermediate
actions.

To determine change in intermediate rewards, we analyzed
participant responses for the first three target actions over the
course of the experiment. We used a mixed effects linear model
that included feedback as a dependent variable; day, intermediate
action (coded O to 2 by index in the target action sequence not
including the final action), and their interaction as random effects
across participants; and day, intermediate action, day/action inter-
action, and condition as fixed effects. Including condition as a
fixed effect improved the fit of the model according to a likelihood
ratio test, x*(5) = 11.26, p < .05. More complex interactions,
including any interaction between condition and day, were not
significant nor was the Day X Action interaction, x2(1) = 2.56,
p = .11, and so they were not included. Planned contrasts (the
same as in the task success analysis) and tests of significance using

* This analysis was additionally done with the success cutoff as five and
nine steps and yielded qualitatively similar results.
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Table 2
Experiment 3: Estimated Fixed Effects for Logistic Regression Models of Training Success (Less Than 7 Steps in Game Day)
Exploring dog (3a) Nonexploring dog (3b) Exploring child (3¢c)
Coefficient B SE Wald Z B SE Wald Z B SE Wald Z
Intercept -1.79 .16 —11.35" —6.84 93 —7.38"" —1.62 15 —-10.91"
Day 13 28 %102 4.62°"" 1.57 23 6.70""" 8.8 X 1072 33X 1072 271"
AS vs. RM 35 93 x 1072 3.76"* 1.71 39 438 40 8.9 X 1072 4.56"*
MB vs. MF —.48 18 —2.60"" —5.21 1.11 —4.727 -.79 18 —4.33"
Neu. vs. Opt. 44 18 241" 2.00 99 2.01" -.36 18 —2.00"
U. vs. S. prior 57 .20 2.81"" 1.38 .55 2.54" .39 18 2.10"
Condition 23 .37 .62 391 1.99 1.97" —.46 .36 —1.25
Day X AS vs. RM 7.0 X 1072 1.8 X102 3.82" 1.03 .19 546" A1 22X 1072 4.86™""
Day X MB vs. MF 35X 1072 33x107? 1.02 .19 17 111 13 3.9x 1072 3.35"
Day X Neu. vs. Opt. —2.1 X102 33X 1072 —-.57 .20 .16 1.27 15 40x 102 3.76"
Day X U.vs. S. prior —75X 107> 39X 1072 -1.85 —41 38 —-1.08 —-.10 47 %1072 —2.09*
Day X Condition —-52 %1072 6.6 X 1072 =77 —1.25 36 —3.48" 7.9 X 1072 7.9 X 1072 .09

Note.

Experiment 3a: N = 180 participants, 10 game days (observations) per participant. Nagelkerke’s R = .104. Experiment 3b: N = 180 participants,

10 game days (observations) per participant. Nagelkerke’s R* = .260. Experiment 3c: N = 180 participants, 10 game days (observations) per participant.
Nagelkerke’s R*> = .37. AS = action-signaling; RM = reward-maximizing; MB = model-based reward-maximizing; MF = model-free reward-
maximizing; Neu = neutrally initialized reward-maximizing learners; Opt = optimistically initialized reward-maximizing learners; U. = uniform prior;

S. = state-based prior.

*p <005 **p<00l. ***p<0.00l.

Satterthwaite’s approximation showed no difference between the
action-signaling and reward-maximizing conditions, f = 1.7 X
1073, SE = 1.0 X 1072, (177.58) = —0.17, p = .86. Instead, it
was model-based algorithms that received greater rewards than
model-free algorithms, B = 5.2 X 1072, SE = 1.8 X 1072,
1(179.92) = 2.89, p < .01). The full model and parameter esti-
mates are reported in Appendix C.

In short, there is no evidence that participants lowered their
rewards based on whether the agent they were teaching was
designed to exploit their rewards. Indeed, we find they gave

greater rewards to model-based algorithms that then even more
adaptively maximize rewards.

Experiment 3b: Teaching Nonexploring Dog Learners

In Experiment 3a, the learning algorithms randomly explored
with some small probability. This facilitates learning but might
make teaching more difficult because it adds noise to the learner’s
policy. To determine if participants would show similar teaching
strategies when actions more directly reflected the learned policy,

Exploring Dog Non-Exploring Dog Exploring Child
Teaching Teaching Teaching
(Exp. 3a) (Exp. 3b) (Exp. 3¢)

i iid
FHHHH
12113 Action-Signaling

Uniform Prior

[l state Prior

123456728910
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12345678910
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123456780910
Reward-Maximizing

Model-Based
Neutral

p B Optimistic

Model-Free
Neutral

B Optimistic

Target Action

Figure 12. Experiment 3a, 3b, and 3c: Average feedback by participant for intermediate target actions over the
course of the experiment (top row) and by action (bottom row). Error bars are bootstrapped 95% confidence
intervals. See the online article for the color version of this figure.
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Experiment 3b used the same design as 3a, but the algorithms
always took the best action as dictated by the currently learned
policy.

Method. One hundred and 80 (83 female, 95 male, two other)
Amazon Mechanical Turk workers participated in the study with
30 participants assigned to each of the six conditions. The mate-
rials and procedure used in this study were identical to those in the
previous study except agents always selected actions from the
currently learned policy. Experimental procedures were approved
by Brown University’s Research Protection Office (protocol #
1505001248, title: “Exploring human and machine decision-
making in multi-agent environments”).

Results.

Final trained behavior. As in Experiment 3a, participants in
all conditions were able to teach the intermediate task of staying on
the path by the final 4 days, whereas those in the action-signaling
conditions were more successful at training the entire task. There
were additional differences that we note below.

We analyzed path occupancy for the last four episodes for the
reward-maximizing conditions only. This is because in the action-
signaling condition, path occupancy was at ceiling (see Figure 11).
As in the analysis for Experiment 3a, we used a mixed effects
logistic regression with path occupancy as a binary variable;
intercepts and day as random effects across participants; and
condition and day as fixed effects. The intercept value indicated
that overall, path tiles were 27.4 times more likely to be occupied
than not (B = 3.32, SE = 1.64, Wald Z = 2.02, p < .05). In
addition, using the same planned contrasts as in Experiment 3a, we
found neutrally initialized agents learned to stay on the path better
than optimistically initialized learners (f = 0.82, SE = 0.23, Wald
Z = 3.12, p < .001).

We analyzed training success using the same model as in Experi-
ment 3a: Success was defined as the number of steps in a day being
less than seven; day was a random effect across participants; condition
and day were fixed effects; planned comparisons were between
action-signaling versus reward-maximizing, model-based versus
model-free, and uniform versus state-prior conditions; and tests of
significance were performed using Satterthwaite’s approximation.
Parameter estimates and tests are reported in Table 2. In particular, we
found that, as expected, participants in the action-signaling conditions
were more successful at teaching the complete task than those in the
reward-maximizing conditions over the course of the game days
(Action-Signaling/Reward-Maximizing X Day: 3 = 1.03, SE = 0.19,
Wald Z = 5.46, p < .001).

Feedback for intermediate actions over time. Even without
random learner exploration, we found little evidence that partici-
pants gave less rewards to reward-maximizing agents. Rather, if
anything, there was a slight bias to give greater rewards in the
reward-maximizing conditions for intermediate actions closer to
the end of the target sequence.

We fit a mixed effects linear regression model to feedback data.
Likelihood ratio tests showed that for fixed effects, day, x*(1) =
381.02, p < .0001, action, x*(1) = 233.38, p < .0001, and a
Day X Action interaction, x*(1) = 5.25, p < .05, were significant.
Condition, XZ(S) = 32.72, p < .0001, and its interaction with
intermediate action, XZ(S) = 23.38, p < .001, were also signifi-
cant, but neither the interaction between condition and day,
X>(5) = 6.02, p = .30, nor the full three-way interaction, x*(5) =
6.11, p = .30, were significant. Our model thus included condition

and its interaction with intermediate action, but no additional
interactions.

Tests of significance with Satterthwaite’s approximation
showed no difference between action-signaling conditions and
reward-maximizing conditions (8 = 1.2 X 1072, SE = 1.3 X
1072, #(185.47) = 91, p = .36). However, those in the reward-
maximizing conditions tended to give higher rewards for later
actions (Action X Action-Signaling/Reward-Maximizing contrast:
B=—20X10"2 SE =47 X 1073 178.72] = —4.36, p <
.001). All parameter estimates are reported in Appendix C.

Experiment 3c: Teaching Exploring Child Learners

The previous studies all required participants to train a virtual
dog. We wanted to ensure that our experimental results supporting
the evaluative feedback as communication hypothesis generalizes
beyond teaching dogs and to teaching other humans. Experiment
3c thus uses the same design as Experiment 3a but adapted to a
child learner rather than a dog. (Of course, in both cases, partici-
pants were aware that they were training virtual dogs and children
rather than actual ones).

Method. One hundred and 80 Amazon Mechanical Turk
workers (80 female, 99 male, one other) participated. The same six
conditions and parameter values for the learning algorithms from
Experiment 3a were used.

Given that the agent was now a child, we used a different cover
story for the task. Rather than having the agent be a dog, it was a
4-year-old boy named Alex. Participants were told that Alex liked
to play in the mud, and so he would often track dirt into the house
when he walked around inside. Analogous to the previous studies,
the goal of the task was to teach Alex to go to the bathroom by
walking along the wood floor and not on the white carpet, which
is more difficult to clean. Finally, the options for evaluative
feedback were changed to harsh scolding, mild scolding, doing
nothing, mild praise, and high praise. The interface is shown in
Figure 1.

We told participants they would teach Alex over 10 game days,
each of which ended after Alex took 10 steps or if Alex reached the
bathroom. Alex learned the task as he received feedback and
would appear at the living room entrance (left-bottom) at the
beginning of each day. As before, they were told that their bonus
was contingent on how well Alex performed on his own after the
10 days (though all participants were paid the full bonus). Follow-
ing the task, several questions were asked about the experiment and
the participant’s background. Experimental procedures were ap-
proved by Brown University’s Research Protection Office (protocol
#1505001248, title: “Exploring human and machine decision-making
in multi-agent environments”).

Results.

Final trained behavior. Similar to Experiments 3a and 3b,
participants in all conditions were able to teach staying on the path
and those teaching action-signaling learners performed better at
the task than those teaching reward-maximizing learners. We also
observed several significant contrasts within the set of action-
signaling conditions and set of reward-maximizing conditions, as
shown in Table 2. Specifically, in this final study, there was
steeper learning over time in the model-based conditions compared
to the model-free conditions, the neutral reward-maximizing con-
ditions compared to the optimistic reward-maximizing conditions,
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and the state-based action-signaling condition compared to the
uniform action-signaling condition.

The same analysis as in Experiment 3a was used to evaluate
path occupancy and training success. We fit a mixed-effects lo-
gistic regression model with intercept and day as a random effect
across participants, and day, condition, and their interaction as
fixed effects. Neither fixed effects for day, x*(1) = 3.63, p = .06,
condition, x*(5) = 5.53, p = .35, nor their interaction, x*(5) =
5.96, p = .31, were significant, indicating that there were no
detectable differences across conditions in terms of teaching the
learners to stay on the path.

Consistent with our previous results, people were less likely to
successfully train reward-maximizing agents and people were even
less successful at teaching model-based agents. We analyzed train-
ing success as in Experiment 3a: We fit a mixed-effects logistic
regression model with steps-per day being less than seven as the
binary outcome for success; random effects of intercept and day
across participants; fixed effects of day, condition and their inter-
action; the same planned contrasts; and tests with Satterthwaite’s
approximation. Training success was more likely for action-
signaling than reward-maximizing conditions overall (3 = 0.40,
SE = 8.9 X 1072, Wald Z = 4.56, p < .001) and as a function of
day (B = 0.11, SE = 2.2 X 1072, Wald Z = 4.86, p < .001).
Training success with model-based was less than with model-free
agents (B = —0.79, SE = 0.18, Wald Z = —4.33, p < .001),
although the slope by day was steeper in the model-based condi-
tions (B = 0.13, SE = 3.9 X 1072, Wald Z = 3.35, p < .001).
Additional parameter estimates and test results are reported in
Table 2.

Feedback for intermediate actions over time. ~As with Exper-
iments 3a and 3b, we found that participants did not reduce the
rewards they gave for intermediate target actions more in reward-
maximizing conditions than in the action-signaling conditions. We
selected mixed-effects linear models with day, intermediate action,
and their interaction as random effects across participants; and day,
intermediate action, their interaction, and condition as possible
fixed effects. The fixed effects of day, x*(1) = 83.41, p < .0001,
and action, xz(l) = 234.44, p < .0001, but not their interaction,
xz(l) = 0.17, p = .68, were significant. Condition and higher-
order interactions involving condition were not significant, all
x*(5) < 0.23, p > .28, indicating that patterns of feedback did not
detectably differ between conditions. See Appendix C for param-
eter fits.

Discussion

Several consistent patterns emerge from Experiments 3a, 3b,
and 3c. First, participants reliably produce positive reward cycles
that a reward-maximizing agent will learn to exploit. This results
in reward-maximizing learners failing to learn the entire task, even
though they are always taught the subtask of staying on the path.
Participants often give feedback that results in dramatic deviations
from the target behavior (see Figure 10). Importantly, reward-
maximizing learners do not all fail equally in the presence of
positive reward cycles. Neutrally initialized and model-free learn-
ers tended to “learn” the target task better than optimistically
initialized and model-based learners. However, it is worth noting
that although these algorithms are more likely to perform the target
sequence, it is only because they are doing a worse job at maxi-

mizing rewards: They tend to get stuck in locally reward-
maximizing policies. In contrast, optimistic initialization helps
ensure that a learner will find the globally best solution to a
problem (Sutton & Barto, 1998). Model-based learners (that have
a correct model) have more powerful learning processes that can
leverage knowledge of environment dynamics to accomplish their
goals (Brafman & Tennenholtz, 2003). How well an algorithm
learns to maximize reward thus seems to be inversely related to
participants’ success at training it. This suggests that the principle
of reward maximization does not guide their choice of teaching
strategy.

Second, we did not find evidence that people adapt their feed-
back strategy while interactively teaching reward-maximizing
agents. If people realized a learner was treating their feedback as
incentives and updating how those incentives were being inter-
preted, they could decrease rewards for learned actions. This does
not occur, even in the absence of random learner exploration (3b).
Indeed, in Experiments 3a and 3b we observed a different pattern:
People gave more rewards to reward-maximizing learners. Note
that the latter are better at learning to exploit positive reward
cycles than model-free agents. This indicates that when faced with
agents that maximize feedback, people persevere in using feedback
communicatively even though this strategy is not effective.

Finally, we also found that within the action-signaling condi-
tions, people trained the uniform prior learner more quickly than
the state-reward prior learner. This is because although a state-
reward prior is effective in some tasks (Loftin et al., 2014), in our
particular experiment it initially biases the learner away from the
target task and toward ones where path tiles are rewarding and not
simply neutral. That is, the state-reward prior assumes that certain
locations are either worth +1, —1, or 0, and as a result needs to be
explicitly taught that only the goal state is rewarding. Nonetheless,
because the learner is doing policy inference based on feedback as
signals, this initial bias can be quickly overcome, allowing the
agent to eventually learn the task just as well as one with a uniform
prior over policies.

To summarize, across different agent types (virtual dogs and chil-
dren) and across different parameterizations of reward-maximizing
learning algorithms, teachers persist in producing positive reward
cycles. This indicates people use rewards and punishments as signals,
which is effective at teaching action-signaling learners but not reward-
maximizing learners. Overall, this provides further evidence that
people teach using evaluative feedback as communication and not as
reinforcement.

General Discussion

In several experiments, we provide converging evidence that
people do not teach other agents as if they are maximizing rewards.
Instead, people use rewards and punishments in a communicative
manner, which leads to positive reward cycles that a reward-
maximizing agent would learn to exploit at the expense of learning
the complete task. We tested whether people produce positive
reward cycles for isolated actions (Experiment 1), during a learn-
er’s successful improvement on the task (Experiment 2), and while
interacting dynamically with several learning algorithms that im-
plement reward-maximization or action-signaling (Experiment 3).
We found strong evidence that people not only produce positive
reward cycles but persist in producing positive reward cycles even



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

540

when it is not effective. In addition, we found that the use of
rewards and punishments as communication generalized across
virtual canine and human (children) agents. This indicates that
using evaluative feedback as communication may not be specific
to the type of agent a person is teaching.

These findings shed new light on how people structure rewards
and punishments to teach, which has implications for pedagogy
and social learning more broadly. In the following sections, we
describe how our results relate to previous research and future
directions for investigation.

Reinforcement Learning Approaches to Social
Rewards and Punishments

Our main result, that people produce rewards and punishments
that are not effective for teaching reward-maximizing agents,
relates to existing RL accounts of social rewards and punishments
in a number of ways. Much contemporary psychological research
models behavior, decision-making, and cognition as processes
ultimately driven by learning how to maximize environmental
rewards (Dayan & Niv, 2008; Sutton & Barto, 1998). In recent
decades, researchers have identified dopamine as a neural substrate
for reward prediction errors (Glimcher, 2011; Schultz, Dayan, &
Montague, 1997) and developed cognitive and neural models of
the relationship between goal-directed, model-based systems and
habitual, model-free learning mechanisms (Glédscher et al., 2010;
Lee, Seo, & Jung, 2012; Otto, Gershman, Markman, & Daw,
2013). Moreover, a number of studies have shown that areas of the
brain involved in processing nonsocial rewards, such as food,
water, or money, are similarly activated by social rewards such as
signals about reputation, praise, or facial expressions (Izuma et al.,
2008; Jones et al., 2011; Lin et al., 2012). This has led some
scientists to posit the existence of a “common neural currency” for
representing hedonic experience in the brain (Ruff & Fehr, 2014).

There is an apparent tension between our experimental results
and the general finding that people show signatures of processing
social rewards similar to nonsocial rewards. However, this can be
resolved by distinguishing between representing reward in the
brain and learning about reward from different sources, whether
they are nonsocial, social, or pedagogical. In the nonsocial case,
rewards are experienced from the environment directly and can be
learned directly. An algorithm can thus maximize the reward
signal itself, as in standard RL (Sutton & Barto, 1998). In contrast,
when rewards are generated socially or pedagogically, they are
mediated by the internal representations and intentions of the
social partner who is producing them. An algorithm would take
that mediation into account while learning, and then represent what
has been learned as if it were learned directly from the environ-
ment. In other words, an agent needs to engage in inference based
on the reward signal. Whether and how this inference process
proceeds in people is then an empirical question.

A key contribution of our work is then the following: We
explore how a teacher’s communicative intentions and represen-
tations mediate the use of rewards and punishments. This investi-
gation complements existing research on how behavior and cog-
nition is shaped by environmental contingencies (Collins & Frank,
2013; Dayan & Niv, 2008; Gershman et al., 2010) as well as how
rewards are represented in the brain (Ruff & Fehr, 2014). Future
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work must explore how these phenomena integrate to form a
complete picture of teaching with and learning from rewards.

In addtion, this article provides a methodological contribution to
research on reward learning and teaching. Here, we use a novel,
multistate task with cyclical state topology. Although some previ-
ous work with reward learning has used tasks with multiple states
(e.g., the two-step task in Daw, Gershman, Seymour, Dayan, &
Dolan, 2011), most studies use single-state bandit tasks in which
participants must choose between “slot machines” that have dif-
ferent (sometimes changing) distributions over rewards and pun-
ishments. However, as discussed in the modeling section, single-
state (or two-state) tasks cannot differentiate between rewards and
punishments as reinforcement or signals. Our studies, in contrast,
allow for the possibility of cyclical action sequences while main-
taining the ability to simulate and analyze behavior based on
formal modeling.

Mental State Inference and Teaching

Our experiments investigate how pedagogical rewards and pun-
ishments are mediated by a teacher’s own representations and
intentions. In particular, the results we report here indicate that
people do not intuitively teach using rewards as incentives, but
rather as signals to indicate that learners are “heading in the
right/wrong direction” by labeling their action with respect to a
target behavior. Importantly, this presupposes that a learner is
capable of reasoning about target behaviors, and therefore how
actions relate to one another through plans and intentions. These
results thus indicate that pedagogical rewards and punishments
attempt to leverage the broader capacity of theory of mind, the
ability to reason about one’s own or another’s mental states (Pre-
mack & Woodruff, 1978).

Outside of reward and punishment, recent developmental work
has highlighted the importance of theory of mind for teaching and
social learning. For example, when children learn by demonstra-
tion, they make strong inferences about how the observable actions
of a demonstrator (e.g., reaching for a cup of water) reflect their
mental states, such as unobservable beliefs, desires, or intentions
(e.g., believing the cup has water, wanting to drink a cup of water).
This capacity for mentalizing facilitates learning about, imitating,
and adopting others’ goals, traits, and world knowledge such as
causal relationships (Hamlin, Ullman, Tenenbaum, Goodman, &
Baker, 2013; Hamlin, Wynn, & Bloom, 2007; Jara-Ettinger et al.,
2015; Lyons et al., 2007; Meltzoff, 1995; Powell & Spelke, 2018).

The action-signaling model draws on these principles since it
assumes that evaluative feedback is a signal for whether actions
are correct with respect to a larger plan of action or intention.
Indeed, the action-signaling model can be considered part of a
broader class of Bayesian social cognition models. Inverse plan-
ning models in this family have been used successfully to model
theory of mind in adults and children (Baker et al., 2009; Jara-
Ettinger et al., 2015). Although they both fit within the same
modeling framework, there is a key difference: In inverse planning
models, the participant observes an agent take a sequence of
actions and uses that to infer the agent’s goals. In the action-
signaling models, the learning agent selects actions and then the
teaching agent provides evidence for the correctness of the action
via evaluative feedback.



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

TEACHING WITH REWARD AND PUNISHMENT 541

The relationship between intention-recognition and learning
from social rewards and punishments has arisen in the animal
social learning literature as well. Despite theoretical claims that
teaching with rewards and punishments would be widespread
among nonhuman animals (Caro & Hauser, 1992; Clutton-Brock
& Parker, 1995), surprisingly little empirical evidence has borne
out this prediction (Raihani, Thornton, & Bshary, 2012; Stevens,
Cushman, & Hauser, 2005). Raihani et al. (2012) have suggested
that this is in part due to the indeterminacy of learning from
rewards and punishments. That is, it is often ambiguous why one
is receiving rewards and punishments from another animal. This
issue often arises in laboratory shaping in the form of “supersti-
tious behavior” in which an animal learns to perform a causally
irrelevant behavior that happened to co-occur with a behavior that
caused a reinforcing stimulus (Skinner, 1974). Nonetheless, it is
clear that humans reward and punish each other in a variety of
contexts (Fehr & Gichter, 2002; Owen et al., 2012). Our finding
that people primarily operate in the mode of using rewards and
punishments communicatively—that is, under the assumption that
the learner can reason about target actions and plans—may reflect
an adaptation that overcomes the indeterminacy problem (Ho,
MacGlashan, Littman, & Cushman, 2017).

An additional consequence of social rewards and punishments
being communicative signals and not reinforcement is that effec-
tive interpretation of evaluative feedback relies on theory of mind.
The literature on autism distinguishes between accounts that em-
phasize deficits in theory of mind ability (Baron-Cohen, Leslie, &
Frith, 1985) and those that focus on the role of decreased rewards
associated with social stimuli (Chevallier, Kohls, Troiani, Brodkin,
& Schultz, 2012). These are often treated as competing accounts;
however, the motivational influence of social rewards and punish-
ments may rely on the receiver interpreting them using theory of
mind representations. Our results suggest that those producing
evaluative feedback expect receivers to reason about how actions
relate to intentions.

Previous Work on Mental State Inference and
Evaluative Feedback

Our work also complements previous work on the role of mental
state inference and evaluative feedback. For example, Meyer and
colleagues (Barker & Graham, 1987; Meyer, 1982, 1992; Miller &
Hom, 1996) reported the “praise/criticism paradox”, which occurs
when the effects of praise or criticism on a learner’s affective state
or perceived competence changes depending on the teacher’s state
of knowledge. They found that participants interpreted a teacher’s
praise positively and criticism negatively when they believed the
teacher did not know their ability, which is consistent with eval-
uative feedback as reinforcement. But when learners believed the
teacher did know their ability on the task, the pattern flipped:
Praise was viewed negatively and criticism positively. These re-
sults indicate that the interpretation of evaluative feedback is a
function of reasoning about a teacher’s mental states and not
simply their apparent reward. Our model does not capture these
results directly because it treats rewards and punishments solely as
a function of whether an action is correct or incorrect. However, it
could be modified to capture Meyer et al.’s results by having
feedback rely on both the correctness of actions and the teacher’s
belief in their competence. For example, negative feedback for

correct actions could be likely only if the teacher believes they are
competent.

Related work in moral psychology has also examined the extent
to which satisfying one’s communicative goals when rewarding
and punishing involves recognition by the receiver. For example,
when punishing someone who had previously transgressed them,
participants were only satisfied if the transgressor signaled that
they understood it “as a message” and not simply experienced it as
a negative outcome (Funk, McGeer, & Gollwitzer, 2014; Gollwit-
zer & Denzler, 2009; Gollwitzer, Meder, & Schmitt, 2011). Con-
sistent with our finding that people persist in producing positive
cycles even when visibly ineffective, this suggests that people
approach using evaluative feedback as a communicative act rather
than an opportunity to incentivize or disincentivize certain behav-
iors.

Finally, an important finding in the educational literature is that
extrinsic rewards delivered by a teacher can undermine intrinsic
motivation to perform certain activities (see Deci, Koestner, &
Ryan, 1999 for a review). In our studies, the learning agents were
not provided with any intrinsic motivation (i.e., the only rewards in
the task came from human teachers) and participants were not
given any indication otherwise. Nonetheless, research on the ef-
fects of extrinsic rewards and intrinsic motivation has distin-
guished between controlling rewards, in which it is clear that the
teacher essentially uses feedback to shape behavior, and informa-
tional rewards, in which the teacher uses them to indicate compe-
tence (Deci et al., 1999; Deci & Ryan, 1980). Positive feedback
interpreted as controlling led to decreased intrinsic motivation,
whereas positive feedback interpreted as information about the
learner’s competence enhances intrinsic motivation. Controlling
and informative rewards map roughly onto evaluative feedback as
reinforcement and communication, respectively. Our work thus
suggests that people have a strong bias toward using rewards and
punishments informationally.

Child Rearing, Dog-Training, and Robot-Shaping

People often teach with rewards and punishments. When inter-
acting with children, adults use reward and punishment to teach a
variety of behaviors such as compliance with rules or social norms
(Owen et al., 2012; Rogoff, Paradise, Arauz, Correa-Chdvez, &
Angelillo, 2003). Similarly, dog owners and dog trainers rely
heavily on rewards and punishments in the form of verbal praise or
scolding as well as food and electric shocks as we used (virtually)
in our experiments (Hiby et al., 2004).

With respect to these interactions, the main implication of our
studies is that people are highly biased to use rewards and
punishments as communication and do not intuitively use them
as reinforcement. This is especially surprising considering that
children and dogs are adept at maximizing rewards and suggests
that people are either completely ineffective at teaching with
evaluative feedback or children and dogs interpret teachers’
feedback as communicative (Azrin & Lindsley, 1956; Salzinger
& Waller, 1962). Given that people robustly succeeded in
teaching action-signaling learners in our studies, it is likely that
children and dogs can interpret teachers’ feedback as commu-
nicative. Moreover, findings on other forms of teaching and
social learning support this possibility. For example, in teaching
by demonstration and imitation, children will treat a stimulus
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produced by a teacher differently based on it being marked as
intentionally pedagogical (Bonawitz et al., 2011; Brugger,
Lariviere, Mumme, & Bushnell, 2007; Buchsbaum et al., 2011;
Sage & Baldwin, 2011). In addition, dogs but not wolves are
also sensitive to cues to communicative intent such as eye
contact (Téglds, Gergely, Kupdn, Miklési, & Topdl, 2012;
Topdl, Gergely, Erddhegyi, Csibra, & Mikldsi, 2009). Recog-
nition of a teacher’s communicative intent could similarly me-
diate whether dogs or children treat social rewards and punish-
ments as reinforcement or signals.

Finally, even though we do not directly test how people
would teach agents that are explicitly designated as artificial
intelligence or robots, our results are relevant to machine learn-
ing. In recent years, researchers have explored building ma-
chines that learn from human rewards and punishment. Some of
this work treats it as reinforcement, but positive reward cycles
are a common mistake even for those who understand reinforce-
ment learning (Isbell et al., 2001; Ng et al., 1999). They can be
overcome by having learning agents myopically privilege im-
mediate rewards over future ones (thus preventing multistate
cycles), but this prevents useful generalization to future actions
(Knox & Stone, 2015). Some recent work has explored inter-
preting human evaluative feedback as signals and found that
these machines were easier for people to teach (Griffith, Sub-
ramanian, Scholz, Isbell, & Thomaz, 2013; Loftin et al., 2014).
Our results indicate that this will continue to be a promising
direction for future developments as this is more in line with
people’s natural intuition for teaching nonrobots with evalua-
tive feedback.

Limitations and Future Directions

The work here examines teaching with reward and punishment
by contrasting social inference (e.g., Baker et al., 2009; Meltzoff,
1995) and reinforcement learning (Dayan & Niv, 2008; Sutton &
Barto, 1998). Our experimental results indicate that people do not
readily use rewards and punishments as reinforcements but rather
as communicative signals that indicate the correctness or incor-
rectness of actions. These findings provide a starting point for
investigating how people teach with rewards, and here we outline
several important limitations of the current work as well as pos-
sible future directions.

Specified models and alternative theories. Our modeling
strategy in this article has been to characterize the different
constraints associated with reward-maximizing and action-
signaling teaching. Focusing on broad classes of learning mod-
els has allowed us to rule out that people use feedback purely as
reinforcements (e.g., via the positive reward cycle analysis in
Experiments la and 1b, simulation results in Experiment 3a,
and results of the interactive paradigm in Experiments 3a—3c) as
well as identify additional features consistent with action-
signaling (e.g., the state training strategy in Experiment la or
temporal trajectory of feedback in Experiments 2 and 3). None-
theless, this approach does not allow us to make strong predic-
tions about fine-grained behaviors (e.g., the probability of slid-
er/button responses) or specific parameters involved in peoples’
action-signaling strategies. An important next step then is to
develop and contrast more specified models that can predict
peoples’ strategies across teaching settings.

In addition, although throughout this article we have empha-
sized two teaching strategies based on reinforcement and signal-
ing, this does not exhaust the space of possible strategies. By
design, our experiments create situations in which by pursuing a
reasonable action-signaling strategy, people produce a positive
reward cycle that a reward-maximizing agent would learn to
exploit. We then find that people pursue (and generally stick to)
such strategies. However, there may be domains that could tease
apart an action-signaling strategy from alternative strategies or that
qualify action-signaling in important ways. For example, we have
discussed how people sometimes use a state training strategy
(Experiment 1a), which is consistent with action-signaling in our
paradigm but may not be in an alternative setting.

Relatedly, the two strategies we emphasize are not always
mutually exclusive. As we note early in this article, there are
situations in which the two strategies are identical (e.g., teaching
single actions), and one might expect that in many settings people
use a mixture of the two strategies. Indeed, that a reward can signal
correctness and punishment signal incorrectness depends on them
being inherently reinforcing and aversive, respectively. If reward-
ing or punishing signals were truly arbitrary signals, then the
mapping between correctness and valence could just as easily be
reversed, a possibility that is intuitively unlikely. Future modeling
work thus needs to explore when and how the communicative use
of rewards and punishments derive from their properties as rein-
forcing and aversive stimuli. Similarly, future work could examine
whether certain contexts can prompt people to adapt and take a
purely reward-maximizing stance.

Additional settings for teaching and learning. The task
used throughout this article was designed with the goal of
distinguishing reward-maximization and action-signaling. In
addition, by using the same environment map, we have been
able to systematically modify various aspects of the teacher—
learner interaction and build up toward full-fledged ongoing
interaction. There are a number of ways that the task could be
generalized to examine how people use rewards. For instance,
rather than having only a single agent shape another’s behavior,
both agents could be engaged in teaching and learning. Most
studies of repeated games involve single actions and assume
participants treat payoffs purely as incentives (Rand & Nowak,
2013). But as with bandit tasks, this can mask people’s use of
rewards and punishments as signals. Paradigms in which ac-
tions unfold over time (Kleiman-Weiner, Ho, Austerweil, Lit-
tman, & Tenenbaum, 2016) or participants can reward and
punish one another may help elucidate whether people use
rewards communicatively in other contexts.

It will also be important to investigate how teaching strate-
gies interact with environments that involve complex represen-
tations. The presence of both action-signaling and state-based
feedback in Experiment 1 suggests different patterns of feed-
back can be driven by different expectations of how learners
carve up the state space. A teacher and learner may not always
share prior knowledge about how states and/or actions should
be represented or relate, and evaluative feedback can be used to
teach features of states (e.g., the difference between path tiles
and garden tiles). In addition, evaluative feedback in everyday
settings is often interwoven with other types of teaching such as
verbal statements or demonstrations. An important question is
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how teachers choose between these different types of teaching
and how they are integrated during learning.

Finally, our findings raise the question of whether human or
animal learners explicitly recognize teaching rewards and punish-
ments as communicative. Future research will need to test whether
this is the case, and if so in what contexts they treat evaluative
feedback as reinforcement or communication. We will also need to
examine whether the types of mismatches we have identified
experimentally (e.g., in Experiment 3) occur in everyday settings.
For instance, do parents construct positive reward cycles that
children learn to exploit?

Conclusion

We have presented a formal analysis of teaching by evaluative
feedback as reinforcement and as communication and have shown
that people have a strong tendency toward the latter. This chal-
lenges the widely held assumption that people use rewards and
punishments to shape behavior. Instead, these findings reveal that
evaluative feedback is more similar to other forms of pedagogy
like teaching by example or by demonstration (Ho, Littman,
MacGlashan, Cushman, & Austerweil, 2016; Shafto et al., 2014).
Specifically, people use rewards and punishments communica-
tively, suggesting a shared representational basis for teaching
across seemingly disparate teaching behaviors.
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Appendix A

Theorem and Proof Regarding Positive Reward Cycles

We are interested in characterizing when a combination of
feedback and learning strategies leads to a positive reward cycle.
To do so, we introduce the following definitions.

Given a state space S, learner actions A%, and transition function T
: S X AF — S, a reward maximizing learner can have a discount rate
v € [0,1], a horizon H € N U {0}, and intrinsic rewards R : S X
AP X § — R. A static teaching strategy 7 is
one in which the same feedback function F : S X A is used at every
timestep. Let w,=(my, 7, T, ..., T, ...) be a sequence of learned
policies, 7 S — A, that results from the learning strategy £
interacting with the teaching strategy 7. Standard RL algorithms seek
to maximize expected reward (Sutton & Barto, 1998) in that they
converge to a policy that optimizes value from all s € S. We define
a reward maximizing learning algorithm £X™ as this type of algo-
rithm. That is, limm, = ™M = argmax, V"(s), Vs, where V™
(s0) = 21, 'y’[R(fV?a,, $;+1) + F(s,, a)], where a, = m(s,) and s, , =
T(s,,a,). A teaching strategy is effective for teaching a target policy 7"
from initial state s, to a learning strategy £ if le” m o=

Next, we define the exact conditions under which feedback
“counts” as producing a positive reward cycle given the learner
discount, horizon, and intrinsic rewards.

Definition

A positive reward cycle is defined as a cyclical trajectory that
deviates from the target policy and yields a greater cumulative
discounted reward for a reward maximizing learning algorithm
LM than following the target policy. That is, { =
(80> @y -+« » S» - - - » Sy), k < H is a positive reward cycle with
respect to a reward-maximizing learning algorithm £fM with
intrinsic rewards R, discount vy, and horizon H; target policy 7",
and feedback F if and only if §, = §, there is at least one a, in

{ such that w*(s,) # a,, and V({) =
(s a)] > V7 (5p).
Based on this, we can prove the following theorem:

IH=0 ’yt[R(s[’ Ay, St+l) + F

Theorem

Given a reward maximizing learning algorithm £®™ with dis-
count rate vy, horizon H, and intrinsic rewards R, a static teaching
strategy 7 with feedback function F for teaching =" from s, is not
effective for teaching 7™ if there is a positive reward cycle.

Proof

A reward maximizing learning algorithm £ will learn the policy
l,linx m, = M = argmax,V™(s), Vs. If there is a positive reward
cycle, then there is a state for which it is not the case that the target
policy maximizes value from that state. Therefore, ™™ # 7" and 7

is not an effective strategy for teaching m".

Remarks

First, most algorithms in reinforcement learning fall under the
definition of reward-maximizing (Sutton & Barto, 1998). Addi-
tionally, although the proof is for a static teaching strategy, ex-
tending the idea to the dynamic case is conceptually similar and
interested readers should look at Devlin & Kudenko (2012) for
generalizations of the shaping theorem presented in Ng et al.
(1999). Finally, the experiments and analyses we report in the
main portion of the article assume that learners have no intrinsic
motivation (i.e. R(s, a, s') = 0 (Vs, a, s’). We include the R term
in this formulation as it makes explicit how intrinsic motivation
influences whether a positive reward cycle will be learned.

(Appendices continue)
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Appendix B

Algorithmic Details

Model-Free Algorithm

The Model-Free algorithm we implement is Q-learning with
eligibility traces (Sutton & Barto, 1998; Watkins & Dayan, 1992).
Like other Model-Free algorithms, Q-learning does not have an
explicit representation of transitions in the world or rewards, but
updates an estimate of action-values as it explores the environ-
ment. It is also guaranteed to converge to the reward-maximizing
action-values in the limit. An eligibility trace allows the algorithm
to log recently visited states and associate later rewards with those
states without needing to revisit them. This enables the algorithm
to more quickly propagate information about rewards to states that
were recently visited without affecting its final convergence. For-
mally, Q-learning updates its current action-values according to
the following rule (where 0 < a < 1 controls the learning rate and
\ is an eligibility trace decay rate):

q(s,a) < qs,a) + adels,a), Vs,a 5)
where
O =fi1 v mae}x qdsi1, a') — qds, a,) (6)
and
0, if g (s, @) < maxz q(s,, @) and (s, a) # (s, a,)
if (s, a,) <maxz qds,, @) and (s, a) = (s, a;)
efs,a) = Vs, a.

Yhe,—i(s,a) + 1, if q(s,, a,) = max;q,s, a) and (s,a) = (s, a,)’

Yhe;—i(s, a), otherwise

(7

9, denotes the reward prediction error and e, denotes the eligibility
trace function at a timestep t.

Model-Based Algorithm

In contrast, model-based learning algorithms maintain a rep-
resentation of state transitions and reward functions in the
world. This allows the learner to deduce the optimal policy
given what is known about the world. For example, algorithms
like Rmax have the learner simultaneously learn the transition
model of the world and the world reward function (Brafman &
Tennenholtz, 2003). Here, however, we assume that the learner
has a complete and accurate model of state transitions and is
mainly concerned with learning and maximizing the teacher’s
feedback function.

In our implementation, at each timestep, the reward function is
updated:

R i(spa) <= (1 — )R(s,a) + af), (8)

where 0 < o < 1 is the learning rate. This reward function is
combined with the transition function to calculate an optimal value
function V;(s) = max,R(s,a) + vy, T(s,a,s')V/(s') and an
optimal (reward-maximizing) policy g,,.

Action-Signaling Implementation

The action-signaling learner treats feedback as a direct signal of
whether the learner’s action matches the desired action in the
teacher’s target policy. A positive response from the teacher indi-
cates that the action is “correct” from the teacher’s perspective,
while a negative response indicates that it is “incorrect”. Here,
feedback is not treated as a quantity to maximize, rather, it is
diagnostic of an unknown variable: the teacher’s target policy, 7",
Thus, learning from evaluative feedback can be modeled as a
social or communicative inference problem in a manner similar to
inferring an actor’s goals based on their behavior or a speaker’s
meaning based on their utterances. Following recent research in
computational models of social cognition and language, we model
these inferences using Bayesian models (Baker et al., 2009; Frank
& Goodman, 2012; Loftin et al., 2014).

For Experiment 3, our learning algorithm updates a posterior
probability over target policies 7" at each timestep according to
the equation:

T
P(1T*| . fl:T9 S1.15 al:T) o P(“T*)ljlp(]ﬂ . ﬂ*(st), at)' (9)

Eventually, the Learner Then Selects Actions with the Highest
Marginalized Probability, for All s € S:

’"Action—Signaling(S) =
argmax e, >, Hw'(9) = AP | fiposipmary).  (10)
where {condition} Is 1 if condition Is True, and O if It Is False.
The likelihood function, p(f,| 7*(s,),a,), is the probability of the
teacher giving feedback f, for the learner taking action q, in state s,
given the target policy is 7. It is represented as a sigmoid function

between —1 and 1. The probability of reward when the action is
correct or incorrect is, respectively:

PN () =) = T ooty (1

and

Pl (s) # a) = #p{'vﬁ}’ (12)

(Appendices continue)
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where k > 0 is the slope of the sigmoid function, controlling how
smooth feedback is expected to be. As k increases, the likelihood
becomes more deterministic. Additionally, for all values of k, this
function integrates to 1 on the interval [-1, 1], making it a valid
probability distribution. As plotted in Figure B1, positive feed-
back has higher probability when the action was correct, while
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Graphs of likelihood functions for action-signaling models.
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negative feedback has higher probability when the action is
incorrect. One consequence of this formulation is that if a
teacher gives a neutral reward of 0, the likelihood given the
action is correct is equal to if it is incorrect. As a result, noisy
feedback and neutral feedback or the absence of feedback does
not affect the learned policy.

Appendix C
Experiment 3: Additional Model Fits

Table C1
Experiment 3a: Fixed Effects in Linear Regression Model of Target Action Rewards

Predictor Estimate SE df t 4
Intercept .63 .02 173.26 33.97 <.001
Day —9.0 % 1073 3.1x 1073 177.41 —-2.92 <.01
Action 7.5 X 1072 9.3 %1073 164.00 8.13 <.001
Action-signaling vs. reward-maximizing —-1.8Xx 1073 1.0 X 1072 177.58 —.17 .86
Model-based vs. model-free 52 %1072 1.8 X 1072 179.92 2.89 <.01
Neutral vs. optimistic initialization -3.1x1072 1.8 X 1072 180.18 -1.75 08
Uniform vs. state prior 1.9 X 1072 25X 1072 176.66 77 45
Condition —14 %1072 3.6 X 1072 179.92 —.38 .70
Day X Action -2x 1073 1.4 X103 141.84 —1.40 16

Note. N = 180 participants, N = 6,830 observations in total.

(Appendices continue)
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Table C2
Experiment 3b: Fixed Effects in Linear Regression Model of Target Action Rewards

Predictor Estimate SE df t P
Intercept 6.1 X 107! 1.9 X 1072 176.33 31.94 <.001
Day —2.7 X 1072 3.1x 1073 177.52 —8.62 <.001
Action 7.8 X 1072 8.6 X 1073 148.22 9.07 <.001
AS vs. RM 1.2 X102 13X 102 185.47 91 36
MB vs. MF 12X 1072 22X 1072 173.32 .56 .58
N. vs. O. initialization —-6.9x 1073 22X 1072 173.31 -.32 75
U. vs. S. prior 25X 1072 3.1 X 1072 190.88 .80 42
Condition 27X 1072 43X 1073 173.29 .61 .54
Day X Action -37x1073 1.7 X 1073 182.44 —2.23 <.05
Action X AS vs. RM —2.0x 102 47 X103 178.72 —4.36 <.001
Action X MB vs. MF 1.0 X 1072 82x 1073 177.61 1.22 22
Action X N. vs. O. Initialization —44x1073 82x 1073 177.81 -.53 .60
Action X U. vs. S. Prior 59%x 1073 1.1 X 1072 178.37 52 61
Action X Condition —-29 %1072 1.6 X 1072 177.43 —1.77 .08

Note.

AS = action-signaling; RM = reward-maximizing; MB = model-based reward-maximizing; MF = model-free reward-maximizing; N. = neutrally

initialized reward-maximizing learners; 0. = optimistically initialized reward-maximizing learners; U. = uniform prior; S. = state-based prior. N = 180

participants, N = 7,418 observations in total.

Table C3

Experiment 3c: Fixed Effects in Linear Regression Model of Target Action Rewards

Predictor Estimate SE df t P
Intercept 71 1.8 X 1072 177.40 39.31 <.001
Action 5.7 %1072 7.9 %1073 168.20 7.19 <.001
Day -1.0x 1072 29x 1077 173.20 —3.76 <.001
Day X Action -3.8x10°* 14 %1073 164.60 -27 79

Note. N = 180 participants, N = 6,789 observations in total.
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