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MULTIPLE MEMORY SYSTEMS
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cue
familiarity

recollection

response

John Anderson

“For a long time, I had felt that there was 
something missing in the existing theories of 
human memory, including my own. Basically, all 
of these theories characterized memory as an 
arbitrary and nonoptimal configuration of 
memory mechanisms. I had long felt that the 
basic memory processes were quite adaptive and 
perhaps even optimal”

The Adaptive Character of Thought, 1990
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PAVLOVIAN CONDITIONING
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Ivan Pavlov  
Nobel Prize 1904

before training training after training

CS →no response  
US →response CS+US CS → response

CS: bell 
US: food 
response: salivation

prediction!
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Rescorla & Wagner, 1972
THE RESCORLA-WAGNER RULE

predict rewards based on stimuli

4
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PAVLOVIAN CONDITIONING REVISITED
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before training training after training

CS →no response  
US →response CS+US CS → response
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PAVLOVIAN EXTINCTION
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before training training after training

phase 1 phase 2
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PARTIAL REINFORCEMENT
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before training training after training

CS →no response  
US →response CS, CS+US CS → weak response
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OVERSHADOWING
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before training training after training

CS1 →no response  
CS2 →no response  
US →response

CS1+CS2+US CS1 →weak response  
CS2 →weak response
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BLOCKING
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before training training after training
phase 1 phase 2
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US →response
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INHIBITORY CONDITIONING
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before training training after training

CS1 →no response  
CS2 →no response  
US →response

CS1+US  
CS1+CS2

CS1 →response  
CS2 →no response (inhibition)
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SECONDARY CONDITIONING
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before training training after training
phase 1 phase 2

CS1 →no response  
CS2 →no response  
US →response

CS1+US CS1+CS2 CS2 →response
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FROM RESCORLA-WAGNER TO 
TEMPORAL-DIFFERENCE LEARNING
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predict immediate rewards based on current stimuli
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predict total future rewards based on stimulus history
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NEURAL SUBSTRATE: DOPAMINE
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only metabotropic receptors 
(eg. acting on adenylyl cyclase)

• drugs: cocaine, amphetamine → high dopamine levels 

• disorders: schizophrenia, Parkinson’s disease, ADHD  

• implicated in self-stimulation, addiction
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 (no US) 

DOPAMINE = PREDICTION ERROR

14

NATURE REVIEWS | NEUROSCIENCE VOLUME 1 | DECEMBER 2000 | 2 0 1
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The phasic activation of dopamine neurons has a
time course of tens of milliseconds. It is possible that
this facet of the physiology of these neurons describes
only one aspect of dopamine function in the brain.
Feeding,drinking,punishment, stress and social behav-
iour result in a slower modification of the central
dopamine level, which occurs over seconds and min-
utes as measured by electrophysiology, in vivo dialysis
and voltammetry5,7,37,38. So, the dopamine system
might act at several different timescales in the brain
from the fast, restricted signalling of reward and some
attention-inducing stimuli to the slower processing of
a range of positive and negative motivational events.
The tonic gating of a large variety of motor, cognitive
and motivational processes that are disrupted in
Parkinson’s disease are also mediated by central
dopamine systems.

Neurons that respond to the delivery of rewards are
also found in brain structures other than the dopamine
system described above. These include the striatum
(caudate nucleus,putamen, ventral striatum including
the nucleus accumbens)39–44, subthalamic nucleus45,
pars reticulata of the substantia nigra46,dorsolateral and
orbital prefrontal cortex47–51, anterior cingulate cortex52,
amygdala53,54, and lateral hypothalamus55. Some reward-
detecting neurons can discriminate between liquid and
solid food rewards (orbitofrontal cortex56),determine
the magnitude of rewards (amygdala57) or distinguish
between rewards and punishers (orbitofrontal cortex58).
Neurons that detect rewards are more common in the
ventral striatum than in the caudate nucleus and puta-
men40. Reward-discriminating neurons in the lateral
hypothalamus and the secondary taste area of the
orbitofrontal cortex decrease their response to a partic-
ular food upon satiation59,60. By contrast,neurons in the
primary taste area of the orbitofrontal cortex continue
to respond during satiety and thus seem to encode taste
identity rather than reward value61.

Most of the reward responses described above occur
in well-trained monkeys performing familiar tasks,
regardless of the predictive status of the reward. Some
neurons in the dorsolateral and orbital prefrontal cortex
respond preferentially to rewards that occur unpre-
dictably outside the context of the behavioural
task50,51,62,63 or during the reversal of reward associations
to visual stimuli58.However,neurons in these structures
do not project in a widespread, divergent fashion to
multiple postsynaptic targets and thus do not seem to
be able to exert a global reinforcing influence similar to
that described for the dopamine neurons29.

Other neurons in the cortical and subcortical struc-
tures mentioned above respond to conditioned reward-
predicting visual or auditory stimuli41,51,53,58,64–66, and
discriminate between reward-predicting and non-
reward-predicting stimuli27,51. Neurons within the
orbitofrontal cortex discriminate between visual stimuli
that predict different liquid or food rewards but show
few relationships to spatial and visual stimulus
features56. Neurons in the amygdala differentiate
between the visual aspects of foods and their responses
decreasing with selective satiety53.
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Figure 2 | Primate dopamine neurons respond to rewards and reward-predicting stimuli.

The food is invisible to the monkey but the monkey can touch the food by placing its hand

underneath the protective cover. The perievent time histogram of the neuronal impulses is

shown above the raster display, in which each dot denotes the time of a neuronal impulse in

reference to movement onset (release of resting key). Each horizontal line represents the activity

of the same neuron on successive trials, with the first trials presented at the top and the last

trials at the bottom of the raster display. a | Touching food reward in the absence of stimuli that

predict reward produces a brief increase in firing rate within 0.5 s of movement initiation. 

b | Touching a piece of apple (top) enhances the firing rate but touching the bare wire or an

inedible object that the monkey had previously encountered does not. The traces are aligned to

a temporal reference point provided by touching the hidden object (vertical line). (Modified from

REF. 18.) c | Dopamine neurons encode an error in the temporal prediction of reward. The firing

rate is depressed when the reward is delayed beyond the expected time-point (1 s after lever

touch). The firing rate is enhanced at the new time of reward delivery whether it is delayed (1.5 s)

or precocious (0.5 s). The three arrows indicate, from left to right, the time of precocious,

habitual and delayed reward delivery. The original trial sequence is from top to bottom. Data are

from a two-picture discrimination task. (Figure modified with permission from REF. 27 © (1998)

Macmillan Magazines Ltd.).

© 2000 Macmillan Magazines Ltd

Schultz, Dayan, and Montague, Science 1997
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Figure 9.2 Learning to predict a reward. (A) The surface plot shows the prediction
error δ(t) as a function of time within a trial, across trials. In the early trials, the
peak error occurs at the time of the reward (t = 200), while in later trials it occurs at
the time of the stimulus (t = 100). (B) The rows show the stimulus u(t), the reward
r(t), the prediction v(t), the temporal difference between predictions "v(t − 1) =
v(t) − v(t − 1), and the full temporal difference error δ(t − 1) = r(t − 1) + "v(t −
1). The reward is presented over a short interval, and the prediction v sums the
total reward. The left column shows the behavior before training, and the right
column, after training. "v(t − 1) and δ(t − 1) are plotted instead of "v(t) and
δ(t) because the latter quantities cannot be computed until time t + 1, when v(t +
1) is available.

As the peak in δ moves backward from the time of the reward to the time
of the stimulus, weights w(τ) for τ = 100, 99, . . . successively grow. This
gradually extends the prediction of future reward, v(t), from an initial
transient at the time of the reward to a broad plateau extending from the
time of the stimulus to the time of the reward. Eventually, v predicts the
correct total future reward from the time of the stimulus onward, and pre-
dicts the time of the reward delivery by dropping to 0 at the time when the
reward is delivered. The exact shape of the ridge of activity that moves
from t = 200 to t = 100 over the course of trials in figure 9.2A is sensitive
to a number of factors, including the learning rate, and the form of the
linear filter of equation 9.6.

Unlike the delta rule, the temporal difference rule provides an account of
secondary conditioning. Suppose an association between stimulus s1 and
a future reward has been established, as in figure 9.2. When, as indicated
in table 9.1, a second stimulus, s2, is introduced before the first stimulus,
the positive spike in δ(t) at the time that s1 is presented drives an increase
in the value of the weight associated with s2, and thus establishes a posi-
tive association between the second stimulus and the reward. This exactly
mirrors the primary learning process for s1 described above. Of course, be-
cause the reward is not presented in these trials, there is a negative spike in
δ(t) at the time of the reward itself, and ultimately the association between
both s1 and s2 and the reward extinguishes.
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HIGHER-ORDER LEARNING IN HUMANS
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s1 s2

s3 s4

u

r(t) �(t)

trial type 3-2 trial type 4-1 trial type 4-2

Seymour et al, Nature 2004
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PROBABILISTIC MODELS
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Hermann von Helmholtz 
1821-1894

position of  
lighting source

convexity  
of shape

shading shadow
x1 x2

y1 y2

“perception is unconscious inference”

hidden variables

observed variables

There are things known and there are things unknown, and between are

P(X,Y ) = P(Y,X) = P(X|Y ) P(Y )

P(Y |X) =
P(X|Y ) P(Y )

P(X)

P(X) =
X

Y

P(X,Y )

the rules of probability

product:

Bayes’ rule:

iff X and Y are independent!

sum:  
(marginalisation)

P(X,Y ) = P(X) P(Y )

Rev. Thomas Bayes 
1702-1761

& memory & learning & …
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PROBABILISTIC INFERENCE AND LEARNING
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structureM
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MODEL COMPARISON
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Model complexity and overfitting:
a simple example
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• under which model do I get the  
best fit?

overfitting!

• which model has the highest 
likelihood?

P(D|M) =
�

�

P(D|�,M) P(�|M)

what is the average likelihood of the 
model with randomly chosen 
parameters?

what is the likelihood of the model 
with the best parameters?

parameters model  
structure
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possible data sets

P[D|Msimple]

P[D|Mcomplex] P[D|M‘just right’]

D
D�

experienced data set

P[D|M]

Rev. Bayes

model  
stored in memory 

data  
coming from 

the environment

a model defines a probability distribution  
over data sets

entities should 
not be multiplied 
beyond necessity‘ ’

Occam’s razor

BAYESIAN MODEL SELECTION

19
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CHUNK LEARNING:  
HIERARCHICAL PAIR-WISE ASSOCIATIVE?
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… …
…

Gergő Orbán

József Fiser

Richard Aslin
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VISUAL PATTERN LEARNING
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familiarization
‘pay attention’

test
‘which one looks more familiar?’

inventory

vs.

...

how do humans learn a statistical model of their environment?

• associative learning (fitting 2nd order max-entropy model)
• Bayesian model selection (inferring hidden causal structure)

D = scene1, . . . scenen P
⇣
sceneA|M̂

⌘
vs. P

⇣
sceneB|M̂

⌘

M

M̂ = argmax
M

P(M|D)

Orbán & al, PNAS 2008
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ALTERNATIVE THEORIES
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associative learning Bayesian learning

Boltzmann machine 
+ Gaussian Markov random field

sigmoid belief network  
+ product of (conditional) Gaussian experts

Orbán & al, PNAS 2008
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MULTIPLE EXPERIMENTS
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ASSOCIATIVE VS. BAYESIAN LEARNING
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QUANTITATIVE COMPARISON
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Bayesian learner associative learner

predictions without further fitting
r=0.92 (p<0.006)

r=0.88 (p<0.0002) r=0.71 (p<0.01)

r=−0.23 (p>0.65)
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PROBABILISTIC INFERENCE AND LEARNING

26

parameters

latent variables

data x

y

�

structureM

form F



Máté Lengyel | Learning: a theoretical perspective http://www.eng.cam.ac.uk/~m.lengyelDepartment of Cognitive Science, CEU, 13 October 2017

GOING UP, UP, UP … 

27

why constrain ourselves to one model form?

structure

parameters

latent variables

data

form

x

y

�

M

F

P(x|M) =
�

�

P(x|�,M) P(�|M)

P(x|F) =
�

M
P(x|M,F) P(M|F)

P(x|�) =
�

y

P(x|y, �) P(y|�)

the parent node. Fig. 2 B– D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.

10688 ! www.pnas.org"cgi"doi"10.1073"pnas.0802631105 Kemp and Tenenbaum

Ke
m

p 
&

 T
en

en
ba

um
, 

20
08

M̂ = argmax
M

P(x|M)

F̂ = argmax
F

P(x|F)

�̂ = argmax
�

P(x|�)

Máté Lengyel | Learning: a theoretical perspective http://www.eng.cam.ac.uk/~m.lengyelDepartment of Cognitive Science, CEU, 13 October 2017

GRAPH GRAMMARS

28

Kemp & Tenenbaum, 2008

the parent node. Fig. 2 B– D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B– D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B– D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.

10688 ! www.pnas.org"cgi"doi"10.1073"pnas.0802631105 Kemp and Tenenbaum

the parent node. Fig. 2 B– D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any
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dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D!S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D!S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D!S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F!D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F!D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D!S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D!S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D!S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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Fig. 5. Developmental changes as more data are observed for a fixed set of
objects. After observing only five features of each animal species, the model
chooses a partition, or a set of clusters. As the number of observed features
grows from 5 to 20, the model makes a qualitative shift between a partition
and a tree. As the number of features grows even further, the tree becomes
increasingly complex, with subtrees that correspond more closely to adult
taxonomic intuitions: For instance, the canines (dog, wolf) split off from the
other carnivorous land mammals; the songbirds (robin, finch), flying birds
(robin, finch, eagle), and walking birds (chicken, ostrich) form distinct subcat-
egories; and the flying insects (butterfly, bee) and walking insects (ant,
cockroach) form distinct subcategories. More information about these simu-
lations can be found in SI Appendix.
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