TOPICS IN COGNITIVE SCIENCE LEARNING: A THEORETICAL PERSPECTIVE

MÁTÉ LENGYEL

Computational and Biological Learning Lab Department of Engineering University of Cambridge

Department of Cognitive Science Central European University

MULTIPLE MEMORY SYSTEMS

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel

PAVLOVIAN CONDITIONING

Ivan Pavlov Nobel Prize 1904

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel

3

THE RESCORLA-WAGNER RULE

Rescorla & Wagner, 1972

predict rewards based on stimuli

PAVLOVIAN CONDITIONING REVISITED

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 5

PAVLOVIAN EXTINCTION

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 7

OVERSHADOWING

BLOCKING

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 9

INHIBITORY CONDITIONING

SECONDARY CONDITIONING

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 11

FROM RESCORLA-WAGNER TO TEMPORAL-DIFFERENCE LEARNING

NEURAL SUBSTRATE: DOPAMINE

- drugs: cocaine, amphetamine \rightarrow high dopamine levels
- disorders: schizophrenia, Parkinson's disease, ADHD
- implicated in self-stimulation, addiction

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 13

Máté Lengyel | Learning: a theoretical perspective

HIGHER-ORDER LEARNING IN HUMANS

Seymour et al, Nature 2004

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel

PROBABILISTIC MODELS

observed variables

There are things known and there are things unknown, and between are the rules of probability

product: P(X, Y) = P(Y, X) = P(X|Y) P(Y)Bayes' rule: $P(Y|X) = \frac{P(X|Y) P(Y)}{P(Y)}$ P(X, Y) = P(X) P(Y) iff X and Y are independent!

sum: (marginalisation)

Máté Lengyel | Learning: a theoretical perspective

Rev. Thomas Bayes 1702-1761

PROBABILISTIC INFERENCE AND LEARNING

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 17

MODEL COMPARISON

• under which model do I get the best fit?

 $P\left(\mathcal{D}|\hat{\theta}_{\mathrm{ML}},\mathcal{M}\right)$ parameters
model
structure

what is the likelihood of the model with *the best* parameters?

• which model has the highest likelihood?

$$\mathrm{P}(\mathcal{D}|\mathcal{M}) = \sum_{\theta} \mathrm{P}(\mathcal{D}|\theta, \mathcal{M}) \,\mathrm{P}(\theta|\mathcal{M})$$

what is the average likelihood of the model with *randomly chosen* parameters?

CHUNK LEARNING: HIERARCHICAL PAIR-WISE ASSOCIATIVE?

VISUAL PATTERN LEARNING

ALTERNATIVE THEORIES

+ product of (conditional) Gaussian experts

+ Gaussian Markov random field

MULTIPLE EXPERIMENTS

ASSOCIATIVE VS. BAYESIAN LEARNING

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

QUANTITATIVE COMPARISON

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 25

PROBABILISTIC INFERENCE AND LEARNING

GOING UP, UP, UP ...

why constrain ourselves to one model form?

GRAPH GRAMMARS

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel

29

LEARNING STRUCTURAL FORM

PROBABILISTIC INFERENCE AND LEARNING

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 31

LIFE = SEQUENTIAL DECISION-MAKING UNDER RISK AND UNCERTAINTY

DATA EFFICIENCY VS. COMPUTATIONAL COMPLEXITY

MULTIPLE MEMORY SYSTEMS: THE VIEW FROM RL

Máté Lengyel | Learning: a theoretical perspective

Department of Cognitive Science, CEU, 13 October 2017

http://www.eng.cam.ac.uk/~m.lengyel 35