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PREFACE

About This Book

There are few things more fascinating than the human mind – and few things that are

more difficult to understand. Cognitive science is the enterprise of trying to make sense of

this most complex and baffling natural phenomenon.

The very things that make cognitive science so fascinating make it very difficult to study

and to teach. Many different disciplines study the mind. Neuroscientists study the mind’s

biological machinery. Psychologists directly study mental processes, such as perception

and decision-making. Computer scientists explore how those processes can be simulated

and modeled in computers. Evolutionary biologists and anthropologists speculate about

how the mind evolved. In fact, very few academic areas are not relevant to the study of the

mind in some way. The job of cognitive science is to provide a framework for bringing all

these different perspectives together.

The enormous range of information out there about the mind can be overwhelming,

both for students and for instructors. Different textbooks have approached this challenge

in different ways.

Some textbooks have concentrated on being as comprehensive as possible, with a

chapter covering key ideas in each of the relevant disciplines – a chapter on psychology,

a chapter on neuroscience, and so on. These books are often written by committee – with

each chapter written by an expert in the relevant field. These books can be very valuable,

but they really give an introduction to the cognitive sciences (in the plural) rather than to

cognitive science as an interdisciplinary enterprise.

Other textbook writers take a much more selective approach, introducing cognitive

science from the perspective of the disciplines that they know best – from the perspective

of philosophy, for example, or of computer science. Again, I have learned much from these

books, and they can be very helpful. But I am convinced that students and instructors need

something more general.

This book aims for a balance between these two extremes. Cognitive science has its

own problems and its own theories. The book is organized around these. They are all

ways of working out the fundamental idea at the heart of cognitive science – which is that

the mind is an information processor. What makes cognitive science so rich is that this

single basic idea can be (and has been) worked out in many different ways. In presenting

these different models of the mind as an information processor, I have tried to select as
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wide a range of examples as possible to give students a sense of cognitive science’s

breadth and range.

About the Third Edition

Cognitive Science: An Introduction to the Science of the Mind has been very significantly revised

for the third edition. These changes have been made for two reasons. First, I wanted to

make the book more accessible to students in the first and second years of their studies. To

achieve that goal, I have made changes to both content and style as well as to the organiza-

tion of the book. Second, I wanted to make sure that the new edition reflects the most

exciting new developments in cognitive science, some of which were barely discernible

back in 2010, when the first edition was published.

Previous editions of this book were organized around what I termed the integration

challenge. This is the challenge of providing a unified theoretical framework for studying

cognition that brings together the different disciplines that study the mind. The third

edition no longer uses the integration challenge as an organizing principle. The additional

layer of complexity is useful for many purposes, but not, I now think, for pedagogical ones.

As a result, I have cut the two chapters that were devoted to the integration challenge in the

first and second editions and simplified the presentation in later chapters. In particular,

I no longer employ a two-way division into symbolic and nonsymbolic models of infor-

mation processing. I have added an introduction that explains in some more general terms

some of the issues and problems previously discussed under the label “integration

challenge.”

I have used the space freed up by reorganization to expand coverage of more up-to-date

areas elsewhere in the book. This includes a new chapter on Bayesian approaches to the

mind. This chapter covers both the idea that cognition can be understood in terms of

Bayesian hypothesis testing and error minimization and experimental studies in neuro-

economics of how probabilities and values seem to be calculated in a broadly Bayesian

manner in the primate nervous system. In addition, I have updated the discussion of

machine learning in what is now Chapter 12, eliminating some by now dated examples

and replacing them with more topical discussion of deep learning algorithms.

To help instructors and students, I have divided some of the longer chapters from the

second edition into two. Dynamical systems theory has its own chapter (Chapter 6), while

situated cognition and robotics are now in Chapter 16. The lengthy discussion of mind-

reading in the second edition is now spread over two chapters: “Exploring Mindreading”

(Chapter 13) and “Mindreading: Advanced Topics” (Chapter 14).

How the Book Is Organized

This book is organized into three parts.
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Part I: Historical Landmarks

Cognitive science has evolved considerably in its short life. Priorities have changed as new

methods have emerged – and some fundamental theoretical assumptions have changed

with them. The three chapters in Part I introduce students to some of the highlights in the

history of cognitive science. Each chapter is organized around key discoveries and/or

theoretical advances.

Part II: Models and Tools

Part II sets out the main models and tools that cognitive scientists can bring to bear to

understand cognition and the mind.

The first model, discussed in Chapter 4, is associated with the physical symbol system

hypothesis originally developed by the computer scientists Allen Newell and Herbert

Simon. According to the physical symbol system hypothesis, all information processing

involves the manipulation of physical structures that function as symbols. For the first

decades of cognitive science, the physical symbol systems hypothesis was, as Jerry Fodor

famously put it, the “only game in town.” In the 1980s and 1990s, connectionist and

neural network modelers developed an alternative, derived from models of artificial

neurons in computational neuroscience and connectionist artificial intelligence. Chapter 5

explores the motivation for this approach and introduces some of the key concepts.

Another set of models and tools that can be used to study the mind derives from

dynamical systems theory and is introduced and discussed in Chapter 6. Bayesian

approaches to modeling the mind have also gained currency. As explained in Chapter 7,

these approaches treat the mind as a predictive, hypothesis-testing machine and have been

used both to study the mind as a whole and to model the activity of individual brain areas

and populations of neurons.

One of the key ideas of cognitive science is that the mind is modular (that some, or all,

information processing is carried out by specialized modules). Chapter 8 explores different

ways of developing this basic idea, including the radical claim, proposed by evolutionary

psychologists, that the mind is simply a collection of specialized modules, with no non-

specialized processing at all. Theoretical discussions of modularity are complemented by

experimental techniques for studying the organization of the mind. Chapter 9 surveys the

cognitive scientist’s tool kit in this regard, focusing in particular on different types of brain

mapping.

Part III: Applications

The seven chapters in this part are more applied than those in Part II. They explore

different ways in which the models and tools introduced in Part II can be used to give

accounts of particular cognitive phenomena.
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Chapter 10 considers language learning. Many cognitive scientists have thought

that language learning is a process of learning explicit rules with a significant innate

component. But we explore both neural network and Bayesian models that illustrate

alternative ways of thinking about how children can learn languages. In Chapter 11 we

turn to models of how children learn about the basic structure of the physical world (how

they acquire what is often called a folk physics). Here, too, we see the power of neural

network models.

One of the most significant recent developments of neural network models has been the

explosive growth of deep learning algorithms, which have made possible impressive

advances in areas long thought to be major challenges for artificial intelligence, such as

image recognition, machine translation, and games of strategy, such as Go. These are

covered in Chapter 12.

Chapters 13 and 14 illustrate how theoretical, methodological, and experimental issues

can come together. They work through an issue that has received much attention in

contemporary cognitive science – the issue of whether there is a dedicated cognitive system

response for our understanding of other people (the so-called mindreading system). Chap-

ter 13 presents some of the basic issues and developments, while more advanced topics are

introduced in Chapter 14.

In Chapter 15 we look at recent developments in the cognitive science of conscious-

ness – a fast-moving and exciting area that raises fundamental questions about possible

limits to what can be understood through the tools and techniques of cognitive science.

And then finally, in Chapter 16, we explore the situated cognition movement and related

developments in robotics, particularly behavior-based robotics and biologically inspired

robotics.

Using This Book in Courses

This book has been designed to serve as a self-contained text for a single-semester (12–15

weeks) introductory course on cognitive science. Students taking this course may have

taken introductory courses in psychology and/or philosophy, but no particular prerequis-

ites are assumed. All the necessary background is provided for a course at the freshman or

sophomore level (first or second year). The book could also be used for a more advanced

introductory course at the junior or senior level (third or fourth year). In this case, the

instructor would most likely want to supplement the book with additional readings. There

are suggestions on the instructor website (see below).

Text Features

I have tried to make this book as user-friendly as possible. Key text features include the

following:
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■ Chapter overviews. Each chapter begins with an overview to orient the reader.

■ Exercises. These have been inserted at various points within each chapter. They are

placed in the flow of the text to encourage the reader to take a break from reading and

engage with the material. They are typically straightforward, but for a few, I have placed

suggested solutions on the instructor website (see below).
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■ Boxes. Boxes have been included to provide further information about the theories and

research discussed in the text. Readers are encouraged to work through these, but the

material is not essential to the flow of the text.

xxviii Preface



■ Summaries, checklists, and further reading. These can be found at the end of each

chapter. The summary provides a short overview of the chapter. The checklist allows

students to review the key points of the chapter and also serves as a reference point for

instructors. Suggestions of additional books and articles are provided to guide students’

further reading on the topics covered in the chapter.
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Course Website

A course website accompanies the book. It can be found at www.cambridge.org/bermu

dez3. This website contains

■ a bank of test questions

■ PowerPoint slides for each chapter, organized by section

■ electronic versions of figures from the text

■ review questions for each chapter that students can use to check their understanding and

to review the material

■ sample syllabi for courses of different lengths and different levels

■ links to useful learning resources, videos, and experimental demonstrations

■ links to online versions of relevant papers and online discussions for each chapter

Instructors can access a password-protected section of the website. This contains

■ suggested solutions for the more challenging exercises and problems

The website is a work in progress. Students and instructors are welcome to contact me with

suggestions, revisions, and comments. Contact details are on the website.
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Overview

Cognitive science draws upon the tools and techniques of many different disciplines, including

psychology, philosophy, linguistics, computer science, neuroscience, mathematical logic . . . It is a

fundamentally interdisciplinary activity. This basic fact raises important and fundamental

questions. What do all these disciplines have in common? How can they all come together to form

a distinctive area of inquiry?

The aim of this introduction is to give you a sense of the scope and range of cognitive science,

setting the framework for more detailed study in subsequent chapters. We will explore the idea

that the different disciplines in cognitive science each study different levels of organization in the

mind and the nervous system. In particular, we will see how the brain can be studied at many

different levels, from the level of the molecule upward. The introduction ends with a description

(and illustration) of what I call the space of cognitive science.

0.1 Cognitive Science: An Interdisciplinary Endeavor

The hexagonal diagram in Figure 0.1 is one of the most famous images in cognitive science.

It comes from the 1978 report on the state of the art in cognitive science commissioned by

the Sloan Foundation and written by a group of leading scholars. The diagram is intended

to illustrate the interdisciplinary nature of cognitive science. The lines on the diagram
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indicate the academic disciplines that the authors saw as integral parts of cognitive science,

together with the connections between disciplines particularly relevant to the study of

mind and cognition.

For the authors of the Sloan report, cognitive science is an amalgamation of philosophy,

psychology, linguistics, anthropology, neuroscience, and artificial intelligence. Each of the

six disciplines brings with it different techniques, tools, and frameworks for thinking about

the mind. Each of them studies the mind from different perspectives and at different levels.

Whereas linguists, for example, develop abstract models of linguistic competence (the

abstract structure of language), psychologists of language are interested in the mechanisms

that make possible the performance of language users. Whereas neuroscientists study the

details of how the brain works, computer scientists abstract away from those details to

explore computer models and simulations of human cognitive abilities. Anthropologists

are interested in the social dimensions of cognition, as well as how cognition varies across

cultures. Philosophers, in contrast, are typically interested in very abstract models of how

the mind is realized by the brain.

Some of the connections identified in the diagram were judged stronger than others.

These are marked with a solid line. The weaker connections are marked with a broken line.

At least one of the connections that was judged weak in 1978 has now become a

Philosophy

Linguistics

Anthropology

Neuroscience

Artificial

Intelligence

Psychology

Key: Unbroken lines = strong interdisciplinary ties
Broken lines = weak interdisciplinary ties

Figure 0.1 Connections among the cognitive sciences, as depicted in the Sloan Foundation’s

1978 report. Unbroken lines indicate strong interdisciplinary links, while broken lines indicate

weaker links. (Adapted from Gardner 1985)
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thriving subdiscipline in its own right. A group of philosophers impressed by the potential

for fruitful dialog between philosophy and neuroscience have taken to calling

themselves neurophilosophers, after the title of a very influential book by Patricia Church-

land published in 1986.

Miller’s own account of how the Sloan report was written is both disarming and telling.

“The committee met once, in Kansas City. It quickly became apparent that everyone knew

his own field and had heard of two or three interesting findings in other fields. After hours

of discussion, experts in discipline X grew unwilling to make any judgments about discip-

line Y, and so forth. In the end, they did what they were competent to do: each summar-

ized his or her own field and the editors – Samuel Jay Keyser, Edward Walker and myself –

patched together a report” (Miller 2003: 143). This may be how reports get written, but it is

not a very good model for an interdisciplinary enterprise such as cognitive science.

In fact, the hexagon as a whole is not a very good model for cognitive science. Even if we

take seriously the lines thatmark connectionsbetween the disciplines of cognitive science, the

hexagon gives no sense of a unified intellectual enterprise. It gives no sense, that is, of

something that is more than a composite of “traditional” disciplines such as philosophy

and psychology. There are many different schools of philosophy and many different special-

izations within psychology, but there are certain things that bind together philosophers as a

group and psychologists as a group, irrespective of their school and specialization. For phil-

osophers (particularly in the so-called analytic tradition, the tradition most relevant to cogni-

tive science), the unity of their discipline comes from certain problems that are standardly

accepted as philosophical, together with a commitment to rigorous argument and analysis.

The unity of psychology comes, in contrast, from a shared set of experimental techniques and

paradigms. Is there anything that can provide a similar unity for cognitive science?

One of the main claims of this textbook is that cognitive science is indeed a unified

enterprise. It has its own distinctive problems. Its own distinctive techniques, And its own

distinctive explanatory frameworks. We will be studying all of these in this book. First,

though, we need to get a better picture of the range and scope of the enterprise. In the rest

of this introduction I’ll use psychology and neuroscience as examples to give you a sense of

the overall space of cognitive science.

0.2 Levels of Explanation: The Contrast between
Psychology and Neuroscience

Neuroscience occupies one pole of the Sloan report’s hexagonal figure and it was not

viewed as very central to cognitive science by the authors of the report. The report was

written before the “turn to the brain” that we will look at in Chapter 3, and its

focus reflected the contemporary focus on computer science, psychology, and linguistics

as the core disciplines of cognitive science. Moreover, the authors of the report

treated neuroscience as a unitary discipline, on a par with anthropology, psychology,

and other more traditional academic disciplines. The explosion of research into what

became known as cognitive neuroscience has since corrected both of these assumptions.
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Most cognitive scientists place the study of the brain firmly at the heart of cognitive

science. And it is becoming very clear that neuroscience is itself a massively

interdisciplinary field.

How Psychology Is Organized

One way of thinking about what distinguishes neuroscience from, say, psychology is

through the idea of levels. I am talking here about what is sometimes called scientific

psychology (psychology as it is taught and studied in university departments), as opposed,

for example, to humanistic psychology, self-help psychology, and much of what is rou-

tinely classified as psychology in bookstores. But even narrowing it down like this, there are

many different subfields of psychology.

A quick look at the courses on offer in any reputable psychology department will find

courses in cognitive psychology, social psychology, abnormal psychology, personality

psychology, psychology of language, and so on. It is normal for research psychologists to

specialize in at most one or two of these fields. Nonetheless, most psychologists think that

psychology is a single academic discipline. This is partly because there is a continuity of

methodology across the different specializations and subfields. Students in psychology are

typically required to take a course in research methods. Such courses cover basic principles

of experimental design, hypothesis formation and testing, and data analysis that are

common to all branches of psychology.

Equally important, however, is the fact that many of these branches of psychology

operate at the same level. The data from which they begin are data about cognitive

performance and behavior at the level of the whole organism (I am talking about the

whole organism to make clear that these ideas extend to nonhuman organisms, as studied

in comparative psychology).

The basic explananda (the things that are to be explained) in psychology are people’s

psychological capacities, which includes both cognitive and emotional capacities. The

organization of psychology into different subfields is a function of the fact that there are

many different types of cognitive and emotional capacities.

Within cognitive psychology, for example, what psychologists are trying to explain are

the organism’s capacities for perception, memory, attention, and so on. Controlled experi-

ments and correlational studies are used to delimit and describe those capacities, so that

psychologists know exactly what it is that needs to be explained.

Likewise, social psychologists study the capacities involved in social understanding and

social interactions. They are interested, for example, in social influences on behavior, on

how we respond to social cues, and on how our thoughts and feelings are influenced by the

presence of others. Personality psychologists study the traits and patterns of behavior that

go to make up what we think of as a person’s character. And so on.

If we were to map out some of the principal subfields in scientific psychology it would

look something like Figure 0.2. The diagram is intended to show that the different sub-

branches all study different aspects of mind and behavior at the level of the organism.
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How Neuroscience Is Organized

Things are very different in neuroscience. There are many branches of neuroscience, but

they are not related in the same way. The organization of neuroscience into branches

closely follows the different levels of organization in the brain and the central nervous

system. These levels of organization are illustrated in Figure 0.3, drawn from Gordon

Shepherd’s 1994 textbook Neurobiology.

You may have come across references to areas in the brain such as the primary visual

cortex or the hippocampus, for example. And you may have encountered talk of neural

pathways connecting different areas in the brain. Located at levels A and B in Shepherd’s

diagram, these are the highest levels of neural organization, corresponding most closely to

cognitive activities that we all perform. The primary visual cortex, for example, is respon-

sible for coding the basic features of visual information coming from the retina. It is

sensitive to orientation, motion, speed, direction, and so on. The hippocampus, in con-

trast, is thought to be responsible for key aspects of memory.

Activity at this top level of organization is the result of activity at lower levels of

organization. In Shepherd’s diagram this takes us to levels C and E – the level of centers,

local circuits, and microcircuits. Somehow the collective activity of populations of neurons

codes certain types of information about objects in a way that organizes and coordinates

Mind and behavior at the
level of the organism 

General cognitive capacities
COGNITIVE PSYCHOLOGY

Cognition in a social context
SOCIAL PSYCHOLOGY

Individual personality and character
PERSONALITY PSYCHOLOGY

Non-human cognition
COMPARATIVE PSYCHOLOGY

How cognitive abilities develop
DEVELOPMENTAL PSYCHOLOGY

Figure 0.2 Some of the principal branches of scientific psychology.
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the information carried by individual neurons. These populations of neurons are the local

circuits in Shepherd’s diagram.

What happens in populations of neurons is ultimately determined by the behavior of

individual neurons. But neurons are not the most basic level of organization in the nervous

system. In order to understand how neurons work we need to understand how they communi-

cate. This brings us to Shepherd’s level F, because neurons communicate across synapses. Most

synapses are chemical, but some are electrical. The chemical synapses work through the

transmission of neurochemicals (neurotransmitters). These neurotransmitters are activated by

Levels of explanation
A Cognitive psychology
B Cognitive neuroscience

Behavioral neuroscience
C Systems neuroscience
D Cellular neuroscience
E-G Molecular neuroscience

Sensory
Central

Systems and 
pathways

Centers 
and local 
circuits

Neuron

Impulses in

Synaptic
response

Impulses out

Behavior

Membranes,
molecules, ions

Neurotransmitter or 
neuromodulator

Channel 
protein

Second
messenger

Channel activity

Ion

Microcircuits

Synapse

A

B

C

D

E

F

G

Figure 0.3 Levels of organization and levels of explanation in the nervous system. (Adapted from

Shepherd 1994)
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the arrival of an electrical signal (the action potential). The propagation of neurotransmitters

works theway it doesbecauseof themolecular properties of the synapticmembrane –properties

that are ultimately genetically determined.With thiswe arrive at levelG in Shepherd’s diagram.

The point of this whistle-stop tour through the levels of organization in the brain is that

the subfields of neuroscience map very closely onto the different levels of organization in

the brain. At the top level we have cognitive neuroscience and behavioral neuroscience,

which study the large-scale organization of the brain circuits deployed in high-level

cognitive activities. These operate at what in discussing the subfields of psychology

I termed the level of the whole organism. Systems neuroscience, in contrast, investigates

the functioning of neural systems, such as the visual system. The bridge between the

activity of neural systems and the activity of individual neurons is one of the central topics

in computational neuroscience, while cellular and molecular neuroscience deal with the

fundamental biological properties of neurons.

Different branches of neuroscience (and cognitive science in general) employ tools

appropriate to the level of organization at which they are studying the brain. These tools

and techniques vary in what neuroscientists call their temporal and spatial resolution. That

is, they vary in the scale on which they give precise measurements (spatial resolution) and

the time intervals to which they are sensitive (temporal resolution).

Some of the important variations are depicted in Figure 0.4. We will explore the

differences between these different tools and technologies in much more detail in later

chapters (particularly Chapter 9).

Log time (sec)
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Figure 0.4 The spatial and temporal resolution of different tools and techniques in neuroscience.

Time is on the x-axis and size is on the y-axis. (Adapted from Baars and Gage 2010)
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0.3 The Challenge of Cognitive Science

This section explores these basic ideas of levels of organization, levels of resolution, and

levels of explanation further, to give a picture of what I call the space of cognitive science.

Three Dimensions of Variation

Cognitive science draws upon a large number of potentially relevant fields and subfields.

Those fields and subfields differ from each other along three dimensions.

One dimension of variation is illustrated by the subfields of neuroscience. Neuroscience

studies the brain at many different levels. These levels are organized into a vertical hier-

archy that corresponds to the different levels of organization in the nervous system.

A second dimension of variation comes with the different techniques and tools that

cognitive scientists can employ. As illustrated in Figure 0.4, these tools vary both in spatial

and in temporal resolution. Some tools, such as PET and fMRI, give accurate measurements

at the level of individual brain areas. Others, such asmicroelectrode recording, give accurate

measurements at the level of individual neurons (or small populations of neurons).

The third dimension of variation is exemplified by the different subfields of psychology.

Most of psychology operates at Shepherd’s level A. The different areas of psychology set out

to explore, map, describe, and explain are the cognitive abilities making possible the

myriad things that human beings do and say.

The Space of Cognitive Science

The different parts of cognitive science are distributed, therefore, across a three-

dimensional space illustrated in Figure 0.5.

■ The x-axis marks the different cognitive domains that are being studied

■ The y-axis marks the different tools that might be employed (ordered roughly in terms of

their degree of spatial resolution).

■ The z-axis marks the different levels of organization at which cognition is studied.

This three-dimensional diagram is a more accurate representation of where cognitive

science stands in the early years of the twenty-first century than the two-dimensional

hexagon proposed by the authors of the Sloan report (although the hexagon may well

have been an adequate picture of how things stood at the end of the 1970s).

A good way of thinking about cognitive science is as setting out to provide a unified

account of cognition that draws upon and integrates the whole space. Cognitive science is

more than just the sum of its parts. The aim of cognitive science as an intellectual enterprise

is to provide a framework that makes explicit the common ground between all the different

academic disciplines that study themind and that shows how they are related to each other.

You can think of the analogy with physics. Many theoretical physicists think that the

ultimate goal of physics is to provide a unified Theory of Everything. So too (on this way of

thinking about cognitive science) is it the mission of cognitive science to provide a unified

Theory of Cognition.
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Parts II and III will explore the principal theories of cognition in cognitive science, and see

how they canbe applied to explain different aspects of cognition. First, though,we turn to an

overview of some of the key historical landmarks in the emergence and subsequent devel-

opment of cognitive science. That will occupy the three chapters of Part I. These chapters

should put flesh on the bones of the general picture sketched out in this introduction.

Further Reading

Historical background on the Sloan report can be found in Gardner 1985 and Miller 2003

(available in the online resources). The report itself was never published. A very useful basic

introduction to levels of organization and structure in the nervous system is chapter 2 of

Churchland and Sejnowski 1992. For more detail, a classic neuroscience textbook is Kan-

del, Schwarz, and Jessell 2012. Stein and Stoodley 2006 and Purves et al. 2011 are alterna-

tives. Craver 2007 discusses the interplay between different levels of explanation in the

neuroscience of memory. Piccinini and Craver 2011 is a more general discussion; also see

Bickle 2006 and Sullivan 2009.

Investigative 
technique
(by rough spatial 
resolution)

Psychological data

Neuroscience data

Behavioral data

fMRI

LFP potential
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single-unit
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z

Figure 0.5 The “space” of contemporary cognitive science.
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PART I

HISTOR ICAL LANDMARKS







CHAPTER ONE

The Prehistory of
Cognitive Science

OVERVIEW 15

1.1 The Reaction against Behaviorism in
Psychology 16
Learning without Reinforcement: Tolman and

Honzik, “‘Insight’ in Rats” (1930) 17
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Overview

In the late 1970s cognitive science became an established part of the intellectual landscape. At

that time an academic field crystallized around a basic set of problems, techniques, and theoretical

assumptions. These problems, techniques, and theoretical assumptions came from many different

disciplines and areas. Many of them had been around for a fairly long time. What was new was the

idea of putting them together as a way of studying the mind.

Cognitive science is at heart an interdisciplinary endeavor. In interdisciplinary research great

innovations come about simply because people see how to combine things that are already out

there but have never been put together before. A good way to understand cognitive science is to

try to think your way back to how things might have looked to its early pioneers. They were

exploring a landscape in which certain regions were well mapped and well understood, but where
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there were no standard ways of getting from one region to another. An important part of what

they did was to show how these different regions could be connected in order to create an

interdisciplinary science of the mind.

In this chapter we go back to the 1930s, 1940s, and 1950s – to explore the prehistory of

cognitive science. We will be looking at some of the basic ideas and currents of thought that, in

retrospect, we can see as feeding into what came to be known as cognitive science. As we shall

see in more detail later on in this book, the guiding idea of cognitive science is that mental

operations involve processing information, and hence that we can study how the mind works by

studying how information is processed. This basic idea of the mind as an information processor has

a number of very specific roots, in areas that seem on the face of it to have little in common. The

prehistory of cognitive science involves parallel, and largely independent, developments in

psychology, linguistics, and mathematical logic. We will be looking at four of these developments:

■ The reaction against behaviorism in psychology (Section 1.1)

■ The idea of algorithmic computation in mathematical logic (Section 1.2)

■ The emergence of linguistics as the formal analysis of language (Section 1.3)

■ The emergence of information-processing models in psychology (Section 1.4)

In concentrating on these four developments we will be passing over other important influences,

such as neuroscience and neuropsychology. This is because until quite recently the direct study of

the brain had a relatively minor role to play in cognitive science.

Almost all cognitive scientists are convinced that in some fundamental sense the mind just is

the brain, so that everything that happens in the mind is happening in the brain. Few, if any,

cognitive scientists are dualists, who think that the mind and the brain are two separate and

distinct things. But for a long time in the history of cognitive science it was widely held that we are

better off studying the mind by abstracting away from the details of what is going on in the brain.

This changed only with the emergence in the 1970s and 1980s of new technologies for studying

neural activity and of new ways of modeling cognitive abilities – as we will see in Chapter 3.

1.1 The Reaction against Behaviorism in Psychology

Behaviorism was (and in some quarters still is) an influential movement in psychology. It

takes many different forms, but they all share the basic assumption that psychologists

should confine themselves to studying observable phenomena and measurable behavior.

Behaviorists think that psychologists should avoid speculating about unobservable mental

states, and instead focus on nonpsychological mechanisms linking particular stimuli with

particular responses. These mechanisms are the product of conditioning. For examples of

conditioning, think of Pavlov’s dogs being conditioned to salivate at the sound of the bell,

or the rewards/punishments that animal trainers use to encourage/discourage certain types

of behavior.

For behaviorists, psychology is really the science of behavior. This approach to psych-

ology leaves little room for cognitive science as the scientific study of cognition and the

mind. Cognitive science could not even get started until behaviorism ceased to be the
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dominant approach within psychology. Psychology’s move from behaviorism was a

lengthy and drawn-out process (and some would say that it has not yet been completed).

We can appreciate some of the ideas that proved important for the later development of

cognitive science by looking at three landmark papers. Each was an important statement of

the idea that various types of behavior could not be explained in terms of stimulus–

response mechanisms. Instead, psychologists need to think about organisms as storing

and processing information about their environment, rather than as responding mechan-

ically to reinforcers and stimuli. This idea of organisms as information processors is the

single most fundamental idea of cognitive science.

Learning without Reinforcement: Tolman and
Honzik, “‘Insight’ in Rats” (1930)

Edward Tolman (1886–1959) was a behaviorist psychologist studying problem solving and

learning in rats (among other things). As with most psychologists of the time, he started off

with two standard behaviorist assumptions about learning. The first assumption is that all

learning is the result of conditioning. The second assumption is that conditioning depends

upon processes of association and reinforcement.

We can understand these two assumptions by thinking about a rat in what is known as a

Skinner box, after the celebrated behaviorist B. F. Skinner. A typical Skinner box is illus-

trated in Figure 1.1. The rat receives a reward each time it behaves in a particular way

(pressing a lever, for example, or pushing a button). The reward reinforces the behavior. This

means that the association between the behavior and the reward is strengthened and the

rat’s performing the behavior again becomes more likely. The rat becomes conditioned to

perform the behavior.

The basic idea of behaviorism is that all learning is either reinforcement learning of this

general type, or the even simpler form of associative learning often called classical conditioning.

In classical conditioning what is strengthened is the association between a conditioned

stimulus (such as the typically neutral sound of a bell ringing) and an unconditioned stimulus

(such as the presentation of food). The unconditioned stimulus is not neutral for the

organism and typically provokes a behavioral response, such as salivation. What happens

during classical conditioning is that the strengthening of the association between condi-

tioned stimulus and unconditioned stimulus eventually leads the organism to produce the

unconditioned response to the conditioned stimulus alone, without the presence of the

unconditioned stimulus. The most famous example of classical conditioning is Pavlov’s

dogs, who were conditioned to salivate to the sound of a bell by the simple technique of

using the bell to signal the arrival of food.

So, it is a basic principle of behaviorism that all learning, whether by rats or by human beings,

takes place through processes of reinforcement and conditioning. What the studies reported by

Tolman and Honzik in 1930 seemed to show, however, is that this is not true even for rats.

Tolman and Honzik were interested in how rats learned to navigate mazes. They ran

three groups of rats through a maze of the type illustrated in Figure 1.2. The first group
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received a reward each time they successfully ran the maze. The second group never

received a reward. The third group was unrewarded for the first ten days and then began

to be rewarded.

As behaviorism predicted, the rewarded rats quickly learned to run the maze, while both

groups of unrewarded rats simply wandered around aimlessly. The striking fact, however,

was that when the third group of rats started to receive rewards they learned to run the

maze far more quickly than the first group had.

Tolman and Honzik argued that the rats must have been learning about the layout of the

maze during the period when they were not being rewarded. This type of latent learning

seemed to show that reinforcement was not necessary for learning, and that the rats must

have been picking up and storing information about the layout of the maze when they

were wandering around it, even though there was no reward and hence no reinforcement.

They were later able to use this information to navigate the maze.

Exercise 1.1 Explain in your own words why latent learning seems to be incompatible with the

two basic assumptions of behaviorism.

Suppose, then, that organisms are capable of latent learning – that they can store

information for later use without any process of reinforcement. One important follow-up

To shock
generator

Dispenser tube

Pellet dispenser

Signal lights

Food cup

Electrical grid

Speaker

Lever

Figure 1.1 A rat in a Skinner box. The rat has a response lever controlling the delivery of food, as

well as devices allowing different types of stimuli to be produced.
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question is: What sort of information is being stored? In particular, are the rats storing

information about the spatial layout of the maze? Or are they simply “remembering” the

sequences of movements (responses) that they made while wandering around the maze?

And so, when the rats in the latent-learning experiments start running the maze success-

fully, are they simply repeating their earlier sequences of movements, or are they using

their “knowledge” of how the different parts of the maze fit together?

Tolman and his students and collaborators designed many experiments during the

1930s and 1940s to try to decide between place learning and response learning accounts of

how rats learn to run a maze. Some of these experiments were reported in a famous article

in 1946.

10 104

Start Food Box

Door

Curtain

Figure 1.2 A fourteen-unit T-Alley maze (measurements in inches). Note the blocked passages

and dead ends. (Adapted from Elliott 1928)
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Cognitive Maps in Rats? Tolman, Ritchie, and Kalish,
“Studies in Spatial Learning” (1946)

One experiment used a cross-maze with four end points (North, South, East, West), like

that illustrated in Figure 1.3. Rats were started at North and South on alternate trials. One

group of rats was rewarded by food that was located at the same end point, say East. The

relevant feature of the map for this group was that the same turning response would not

invariably return them to the reward. To get from North to East the rat needed to make a

left-hand turn, whereas a right-hand turn was required to get from South to East. For the

second group the location of the food reward was shifted between East and West so that,

whether they started at North or South, the same turning response was required to obtain

the reward. A rat in the second group starting from North would find the reward at East,

while the same rat starting from South would find the reward at West. Whether it started at

North or South a left turn would always take it to the reward.

This simple experiment shows very clearly the distinction between place learning and

response learning. Consider the first group of rats (those for which the food was always in

the same place, although their starting-points differed). In order to learn to run the maze

and obtain the reward they had to represent the reward as being at a particular place and

N

S

EW

Responses of group 1
rats to obtain reward

Starting from S Starting from N

Figure 1.3 A cross-maze, as used in Tolman, Ritchie, and Kalish (1946). The left-hand part of the

figure illustrates the maze, with a star indicating the location of the food reward. The right-hand

side illustrates how the group 1 rats had to make different sequences of movements in order to

reach the reward, depending on where they started.
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control their movements accordingly. If they merely repeated the same response they

would only succeed in reaching the food reward on half of the trials. For the second group,

though, repeating the same turning response would invariably bring them to the reward,

irrespective of the starting point.

Tolman found that the first group of rats learned to run the maze much more quickly

than the second group. From this he drew conclusions about the nature of animal learning

in general, namely, that it was easier for animals to code spatial information in terms of

places rather than in terms of particular sequences of movements.

Exercise 1.2 Explain in your own words why the experimental results seem to show that rats

engage in place learning rather than response learning.

Tolman took his place-learning experiments as evidence that animals form high-level

representations of how their environment is laid out – what he called cognitive maps.

Tolman’s cognitive maps were one of the first proposals for explaining behavior in terms

of representations (stored information about the environment).

Representations are one of the fundamental explanatory tools of cognitive science.

Cognitive scientists regularly explain particular cognitive achievements (such as the navi-

gational achievements of rats in mazes) by modeling how the organism is using represen-

tations of the environment. Throughout this book we will be looking at different ways of

thinking about how representations code information about the environment, and about

how those representations are manipulated and transformed as the organism negotiates

and engages with its environment.

Plans and Complex Behaviors: Lashley,
“The Problem of Serial Order in Behavior” (1951)

At the same time as Tolman was casting doubt on standard behaviorist models of spatial

navigation, the psychologist and physiologist Karl Lashley was thinking more generally

about the problem of explaining complex behavior.

Much human and animal behavior has a very complex structure, involving highly

organized sequences of movements. Stimulus–response behaviorists have limited resources

for thinking about these complex behaviors. They have to view them as linked sequences

of responses – as a sort of chain with each link determined by the link immediately

preceding it. This is the basic idea behind response learning models of how rats run mazes.

The standard behaviorist view is that rats learn to chain together a series of movements

that leads to the reward. Tolman showed that this is not the right way to think about what

happens when rats learn to run mazes. Lashley made the far more general point that this

seems to be completely the wrong way to think about many complex behaviors.

Think of the complicated set of movements involved in uttering a sentence of English,

for example. Or playing a game of tennis. In neither of these cases is what happens at a

particular moment solely determined by what has just happened – or prompted by what is

going on in the environment and influencing the organism. What happens at any given
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point in the sequence is often a function of what will happen later in the sequence, as well

as of the overall goal of the behavior.

According to Lashley, we should think about many of these complex behaviors as products

of prior planning and organization. The behaviors are organized hierarchically (rather than

linearly). An overall plan (say, walking over to the table to pick up the glass) is implemented by

simpler plans (thewalkingplan and the reachingplan), eachofwhich canbebrokendown into

simpler plans, and so on. Very little (if any) of this planning takes place at the conscious level.

Exercise 1.3 Give your own example of a hierarchically organized behavior.

Lashley’s essay contains the seeds of two ideas that have proved very important for

cognitive science. The first is the idea that much of what we do is under the control of

planning and information-processing mechanisms that operate below the threshold of

awareness. This is the hypothesis of subconscious information processing. Even though we are

often conscious of our high-level plans and goals (of what goes on at the top of the

hierarchy), we tend not to be aware of the information processing that translates those

plans and goals into actions. So, for example, you might consciously form an intention to

pick up a glass of water. But carrying out the intention requires calculating very precisely

the trajectory that your arm must take, as well as ensuring that your hand is open to the

right degree to take hold of the glass. These calculations are carried out by information-

processing systems operating far below the threshold of conscious awareness.

The second important idea is the hypothesis of task analysis. This is the idea that we can

understand a complex task (and the cognitive system performing it) by breaking it down

into a hierarchy of more basic subtasks (and associated subsystems). This hypothesis has

proved a powerful tool for understanding many different aspects of mind and cognition.

We can think about a particular cognitive system (say, the memory system) as carrying out

a particular task – the task of allowing an organism to exploit previously acquired infor-

mation. We can think about that task as involving a number of simpler, subtasks – say, the

subtask of storing information and the subtask of retrieving information. Each of these

subtasks can be carried out by even more simple sub-subtasks. We might distinguish

the sub-subtask of storing information for the long term from the sub-subtask of storing

information for the short term. And so on down the hierarchy.

1.2 The Theory of Computation and the Idea of an Algorithm

At the same time as Tolman, Lashley, and others were putting pressure on some of the basic

principles of behaviorism, the theoretical foundations for one highly influential approach

to cognitive science (and indeed for our present-day world of omnipresent computers and

constant flows of digital information) were laid in the 1930s, in what was at the time a

rather obscure and little-visited corner of mathematics.

In 1936–7 Alan Turing published an article in the Proceedings of the London Mathematical

Society that introduced some of the basic ideas in the theory of computation. Computation
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is what computers do and, according to many cognitive scientists, it is what minds do.

What Turing gave us was a theoretical model that many have thought to capture the

essence of computation. Turing’s model (the so-called Turing machine) is one of the most

important and influential ideas in cognitive science, even though it initially seems to have

little to do with the human mind.

Algorithms and Turing Machines: Turing, “On
Computable Numbers, with an Application to the
Decision Problem” (1936–7)

Turing, together with a number of mathematicians working in the foundations of math-

ematics, was grappling with the problem (known as the Halting Problem) of determining

whether there is a purely mechanical procedure for working out whether certain basic

mathematical problems have a solution.

Here is a way of understanding the Halting Problem. Think about it in terms of com-

puter programs. Many computer programs are not defined for every possible input. They

will give a solution for some inputs, the ones for which they are defined. But for other

inputs, the ones for which they are not defined, they will just endlessly loop, looking for a

solution that isn’t there. From the point of view of a computer programmer, it is really

important to be able to tell whether or not the computer program is defined for a given

input – in order to be able to tell whether the program is simply taking a very long time to

get to the solution, or whether it is in an endless loop.

This is what a solution to the Halting Problem would give – a way of telling, for a given

computer program and a given input, whether the program is defined for that input. The

solution has to work both ways. It has to give the answer “Yes” when the program is

defined, and “No” when the program is not defined.

It is important to stress that Turing was looking for a purely mechanical solution to the

Halting Problem. He was looking for something with the same basic features as the

“recipes” that we all learn in high school for multiplying two numbers, or performing

long division. These recipes are mechanical because they do not involve any

insight. The recipes can be clearly stated in a finite set of instructions and following the

instructions correctly always gives the right answer, even if you don’t understand how

or why.

Since the notion of a purely mechanical procedure is not itself a mathematical notion,

the first step was to make it more precise. Turing did this by using the notion of an

algorithm. An algorithm is a finite set of rules that are unambiguous and that can be applied

systematically to an object or set of objects to transform it or them in definite and

circumscribed ways. The instructions for programming a DVD recorder, for example, are

intended to function algorithmically so that they can be followed blindly in a way that will

transform the DVD recorder from being unprogrammed to being programmed to switch

itself on and switch itself off at appropriate times. Of course, the instructions are not

genuinely algorithmic since, as we all know, they are not idiot-proof.
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Exercise 1.4 Think of an example of a genuine algorithm, perhaps from elementary arithmetic or

perhaps from everyday life.

One of Turing’s great contributions was a bold hypothesis about how to define the

notion of an algorithm within mathematics. Turing devised an incredibly simple kind of

computing mechanism (what we now call, in his honor, a Turing machine). This is an

idealized machine, not a real one. What makes a Turing machine idealized is that it consists

of an infinitely long piece of tape divided into cells. The point of the tape being infinitely

long is so that the machine will not have any storage limitations. A Turing machine is like a

computer with an infinitely large hard disk. Turing did not think that a Turing machine

would ever have to deal with infinitely long strings of symbols. He just wanted it to be able

to deal with arbitrarily long, but still finite, strings of symbols.

Each of the cells of the Turing tape can be either blank or contain a single symbol. The

Turing machine contains a machine head. The tape runs through the machine head, with a

single cell under the head at a given moment. This allows the head to read the symbol the

cell contains. The machine head can also carry out a limited number of operations on the

cell that it is currently scanning. It can:

■ delete the symbol in the cell

■ write a new symbol in the cell

■ move the tape one cell to the left

■ move the tape one cell to the right

Any individual Turing machine has a set of instructions (its machine table). The machine

can be in any one of a (finite) number of different states. The machine table determines

what the Turing machine will do when it encounters a particular symbol in a particular

cell, depending upon which internal state it is in. Figure 1.4 is a schematic representation

of a Turing machine.

The beauty of a Turing machine is that its behavior is entirely determined by the

machine table, its current state, and the symbol in the cell it is currently scanning. There

is no ambiguity and no room for the machine to exercise “intuition” or “judgment.” It is,

in fact, purely mechanical in exactly the way required for an algorithm.

Turing did not actually build a Turing machine. (It is difficult to build a machine with an

infinitely long piece of tape!) But he showed how Turing machines could be specified math-

ematically. The machine table of a Turing machine can be represented as a sequence of

numbers. This allowed him to provemathematical results about Turingmachines. In particu-

lar, it allowed him to prove that there is a special kind of Turing machine, a universal Turing

machine, that can run any specialized Turingmachine. The universal Turingmachine can take

as input a program specifying any given specialized Turing program. It is the theoretical

precursor (with unlimited storage) of the modern-day general-purpose digital computer.

Turing’s paper contained a subtle proof that the Halting Problem cannot be solved.

It was also significant for articulating what we now call the Church–Turing thesis

(in recognition of the contribution made by the logician Alonzo Church). According to

the Church–Turing thesis, anything that can be done in mathematics by an algorithm can
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be done by a Turing machine. Turing machines are computers that can compute anything

that can be algorithmically computed.

What Turing contributed to the early development of cognitive science (although at the

time his work was little known and even less appreciated) was a model of computation that

looked as if itmight be a clue to how information could be processed by themind. As theorists

moved closer to the idea that cognition involves processing information it was an easy step to

think about information processing as an algorithmic process along the lines analyzed by

Turing – a step that became even easier in the light of the huge advances that were made in

designing and building digital computers (which, if the Church–Turing thesis is true, are

essentially large and fast Turing machines) during and after the SecondWorldWar.

Exercise 1.5 Explain in your own words why the Church–Turing thesis entails that any computer

running a program is simply a large and fast Turing machine.

1.3 Linguistics and the Formal Analysis of Language

The study of language played a fundamental role in the prehistory of cognitive science. On

the one hand, language use is a paradigm of the sort of hierarchically organized complex

behavior that Lashley was talking about. On the other hand, the emergence of transform-

ational linguistics and the formal analysis of syntax (those aspects of language use that have

to do with how words can be legitimately put together to form sentences) provided a very

clear example of how to analyze, in algorithmic terms, the bodies of information that might

underlie certain very basic cognitive abilities (such as the ability to speak and understand a

language).
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Figure 1.4 Schematic representation of a Turing machine. (Adapted from Cutland 1980)
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In retrospect we can identify one crucial landmark as the publication in 1957 of Syntactic

Structures by Noam Chomsky, unquestionably the father of modern linguistics and a

hugely important figure in the development of cognitive science. The transformational

grammar proposed by Chomsky (and subsequently much modified by Chomsky and

others) reflects some of the basic ideas covered earlier in this chapter.

The Structure of Language: Chomsky’s Syntactic
Structures (1957)

Chomsky’s book is widely held to be thefirst example of a linguist proposing an explanatory

theory of why languages work the way they do (as opposed to simply describing and

classifying how they work). Chomsky was interested not in mapping the differences between

different languages and in describing their structure, but rather in providing a theoretical

account of why they have the structure that they do. Crucial to his approach is the distinc-

tion between the deep structure of a sentence (as given by what Chomsky calls a phrase

structure grammar) and its surface structure (the actual organization of words in a sentence,

derived from the deep structure according to the principles of transformational grammar).

The deep structure, or phrase structure, of a sentence is simply how it is built up from basic

constituents (syntactic categories) according to basic rules (phrase structure rules). We only

need a small number of basic categories to specify the phrase structure of a sentence. These are

the familiar parts of speech that we all learn about in high school – nouns, verbs, adjectives,

and so on. Any grammatical sentence (including those that nobody is ever likely to utter) is

made up of these basic parts of speech combined according to basic phrase structure rules

(such as the rule that every sentence is composed of a verb phrase and a noun phrase).

In Figure 1.5 we see how these basic categories can be used to give a phrase structure

tree of the sentence “John has hit the ball.” The phrase structure tree is easy to read,

with a bit of practice. Basically, you start at the top with the most general characterization.

As you work your way down the tree the structure of the sentence becomes more

finely articulated, so that we see which words or combinations of words are doing

which job.

Analyzing sentences in terms of their phrase structure is a powerful explanatory tool. There

are pairs of sentences that have very different phrase structures, but are clearly very similar in

meaning. Think of “John has hit the ball” and “The ball has been hit by John.” In most

contexts these sentences are equivalent and interchangeable, despite having very different

phrase structures. Conversely, there are sentences with superficially similar phrase structures

that are plainly unrelated. Think of “Susan is easy to please” and “Susan is eager to please.”

Exercise 1.6 Explain in your own words the difference between these two sentences. Why are

their phrase structures different?

The basic aim of transformational grammar is to explain the connection between

sentences of the first type and to explain the differences between sentences of the second
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type. This is done by giving principles that state the acceptable ways of transforming deep

structures. This allows linguists to identify the transformational structure of a sentence in

terms of its transformational history.

The transformational principles of transformational grammar are examples of algo-

rithms. They specify a set of procedures that operate upon a string of symbols to convert

it into a different string of symbols. So, for example, our simple phrase structure grammar

might be extended to include an active–passive transformation rule that takes the

following form (look at the key in Figure 1.5 for the translation of the symbols):

John has hit the ball

Key

S Sentence
NP Noun phrase
VP Verb phrase
Verb Aux + V
Aux Auxiliary (e.g. “was” or “will”)
V Verb
Det Determiner (e.g. “the” or “a”) 
N Noun 

NP1 VP

breVN NP2

Aux V Det N

S

Figure 1.5 A sample phrase structure tree for the sentence “John has hit the ball.” The

abbreviations in the diagram are explained in the key.
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NP1 þ Auxþ VþNP2

)
NP2 þ Auxþ beenþ Vþ by þNP1

This transforms the string “John + has + hit + the + ball” into the string “the + ball + has +

been + hit + by + John.” And it does so in a purely mechanical and algorithmic way.

Exercise 1.7 Write out an algorithm that carries out the active–passive transformation

rule. Make sure that your algorithm instructs the person/machine following it what to do at

each step.

What’s more, when we look at the structure of the passive sentence “The ball has been

hit by John”we can see it as illustrating precisely the sort of hierarchical structure to which

Lashley drew our attention. This is a characteristic of languages in general. They are

hierarchically organized.

So, in thinking about how theywork, transformational grammar brings together two very

fundamental ideas. The first idea is that a sophisticated, hierarchically organized, cognitive

ability, such as speaking and understanding a language, involves stored bodies of infor-

mation (information about phrase structures and transformation rules). The second idea is

that these bodies of information can be manipulated algorithmically.

1.4 Information-Processing Models in Psychology

In the late 1950s the idea that the mind works by processing information began to take

hold within psychology. This new development reflected a number of different influences.

One of these was the emergence of information theory in applied mathematics. Rather

unusually in the history of science, the emergence of information theory can be pinned

down to a single event – the publication of an article entitled “A mathematical theory of

communication” by Claude E. Shannon in 1948. Shannon’s paper showed how infor-

mation can be measured, and he provided precise mathematical tools for studying the

transmission of information.

These tools (including the idea of a bit as a measure of information) proved very influen-

tial in psychology, and for cognitive science more generally. We can illustrate how

information-processing models became established in psychology through two very

famous publications from the 1950s.

The first, George Miller’s article “The magical number seven, plus or minus two: Some

limits on our capacity for processing information,” used the basic concepts of information

theory to identify crucial features of how the mind works. The second, Donald Broadbent’s

1954 paper “The role of auditory localization in attention and memory span,” presented

two influential experiments that were crucial in Broadbent’s later putting forward, in his

1958 book Perception and Communication, one of the first information-processing models in

psychology. The type of flowchart model that Broadbent proposed (as illustrated in

Figure 1.6) has become a standard way for cognitive scientists to describe and explain

different aspects of cognition.
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How Much Information Can We Handle?
George Miller’s “The Magical Number Seven,
Plus or Minus Two” (1956)

The tools of information theory can be applied to the study of the mind. One of the basic

concepts of information theory is the concept of an information channel. In abstract

terms, an information channel is a medium that transmits information from a sender to a

receiver. A telephone cable is an information channel. So is the radio frequency on which a

television station broadcasts. Perceptual systems are themselves information channels.

Vision, for example, is a medium through which information is transmitted from the

environment to the perceiver. So are audition (hearing) and olfaction (smell). Thinking

about perceptual systems in this way gave Miller and other psychologists a new set of tools

for thinking about experiments on human perception.

Miller’s article drew attention to a wide range of evidence suggesting that human

subjects are really rather limited in the absolute judgments that they can make. An example

of an absolute judgment is naming a color, or identifying the pitch of a particular tone – as

opposed to relative judgments, such as identifying which of two colors is the darker, or

which of two tones is higher in pitch.

In one experiment reported by Miller, subjects are asked to assign numbers to the

pitches of particular tones and then presented with sequences of tones and asked to
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Figure 1.6 Donald Broadbent’s (1958) model of selective attention.
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identify them in terms of the assigned numbers. So, for example, if you assigned “1” to

middle C, “2” to the first E above middle C, and “3” to the first F# and then heard the

sequence E-C-C-F#-E, the correct response would be 2-1-1-3-2.

When the sequence is only one or two tones long, subjects never make mistakes. But

performance falls off drastically when the sequence is six or more tones long. A similar

phenonemon occurs when we switch from audition to vision and ask subjects to judge the

size of squares or the length of a line. Here too there seems to be an upper bound on the

number of distinct items that can be processed simultaneously.

Putting these (and many other) experimental results into the context of information

theory led Miller to propose that our sensory systems are all information channels with

roughly the same channel capacity (where the channel capacity of an information channel

is given by the amount of information it can reliably transmit). In these cases the per-

ceiver’s capacity to make absolute judgments is an index of the channel capacity of the

information channel that she is using.

What Miller essentially did was propose an information-processing bottleneck. The human

perceptual systems, he suggested, are information channels with built-in limits. These

information channels can only process around seven items at the same time (or, to put it

in the language of information theory, their channel capacity is around 3 bits; since each

bit allows the system to discriminate 2 pieces of information, n bits of information allow

the system to discriminate 2

them. One way of increasing the channel capacity is to chunk information. We can relabel

sequences of numbers with single numbers. A good example (discussed by Miller) comes

when we use decimal notation to relabel numbers in binary notation. We can pick out the

same number in two different ways – with the binary expression 1100100, for example, or

with the decimal expression 100. If we use binary notation then we are at the limits of our

visual channel capacity. If we use decimal notation then we are well within those limits. As

Miller pointed out, to return to a theme that has emerged several times already, natural

language is the ultimate chunking tool.

Exercise 1.8 Think of an informal experiment that you can do to illustrate the significance of

chunking information.

The Flow of Information: Donald Broadbent’s
“The Role of Auditory Localization in Attention and Memory
Span” (1954) and Perception and Communication (1958)

Miller’s work drew attention to some very general features of how information is pro-

cessed in the mind, but it had little to say about the details of how that information

processing takes place. The experiments reported and analyzed by Miller made plausible

the idea that the senses are information channels with limited capacity. The obvious next

step was to think about how those information channels actually work. One of the first

models of how sensory information is processed was developed by the British
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psychologist Donald Broadbent in his 1958 book Perception and Communication. As with

Miller, the impetus came from experiments in the branch of psychology known as

psychophysics. This is the branch of psychology that studies how subjects perceive and

discriminate physical stimuli.

We can appreciate what is going on by thinking about the so-called cocktail party

phenomenon. When at a cocktail party, or any other social gathering, we can often hear

many ongoing and unrelated conversations. Somehow we manage to focus only on the

one we want to listen to. How do we manage this? How do we screen out all the unwanted

sentences that we hear? It is plain that we only attend to some of what we hear. Auditory

attention is selective. There is nothing peculiar to audition here, of course. The phenom-

enon of selective attention occurs in every sense modality.

Broadbent studied auditory attention by using dichotic listening experiments, in which

subjects are presented with different information in each ear. The experiments reported in

his paper “The role of auditory localization in attention and memory span” involved

presenting subjects with a string of three different stimuli (letters or digits) in one ear,

while simultaneously presenting them with a different string in the other ear. The subjects

were asked to report the stimuli in any order. Broadbent found that they performed best

when they reported the stimuli ear by ear – that is, by reporting all three presented to the

left ear first, followed by the three presented to the right ear. This, and other findings, were

explained by the model that he subsequently developed.

The basic features of the model are illustrated in Figure 1.6. Information comes through

the senses and passes through a short-term store before passing through a selective filter.

The selective filter screens out a large portion of the incoming information, selecting some

of it for further processing. This is what allows us selectively to attend to only a portion of

what is going on around us in the cocktail party. Only information that makes it through

the selective filter is semantically interpreted, for example. Although people at cocktail

parties can hear many different conversations at the same time, many experiments have

shown that they have little idea of what is said in the conversations that they are not

attending to. They hear the words, but do not extract their meaning.

Broadbent interpreted the dichotic listening experiments as showing that we can only

attend to a single information channel at a time (assuming that each ear is a separate

information channel) – and that the selection between information channels is based

purely on physical characteristics of the signal. The selection might be based on the

physical location of the sound (whether it comes from the left ear or the right ear, for

example), or on whether it is a man’s voice or a woman’s voice.

The selective filter does not work by magic. As the diagram shows, the selective filter is

“programmed” by another system that stores information about the relative likelihoods of

different events. We are assuming that the system is pursuing a goal. What is programming

the selective filter is information about the sorts of things that have led to that goal being

satisfied in the past. Information that makes it through the selective filter goes into what

Broadbent calls the limited capacity channel. Information that is filtered out is assumed to

decay quickly. From the limited capacity channel information can go either into the long-

term store, or on to further processing and eventually into action, or it can be recycled back

into the short-term store (to preserve it if it is in danger of being lost).
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We can see how Broadbent’s model characterizes what is going on in the cocktail party

phenomenon. The stream of different conversations arrives at the selectivefilter. If my goal,

let us say, is to strike up a conversation with Dr. X (who is female), then the selective filter

might be attuned in thefirst instance to female voices. The sounds that make it through the

selective filter are the sounds of which I am consciously aware. They can provide infor-

mation that can be stored and perhaps eventually feed back into the selectivefilter. Suppose

that I“tune into” a conversation that I think involves Dr. X but where the female voice turns

out to belong to Mrs. Z, then the selective filter can be instructed to filter out Mrs. Z’s voice.

Exercise 1.9 Give an example in your own words of selective attention in action. Incorporate as

many different aspects of Broadbent’s model as possible.

1.5 Connections and Points of Contact

This chapter has surveyed some crucial episodes in the prehistory of cognitive science. You

should by now have a sense of exciting innovations and discoveries taking place in very

different areas of intellectual life – from experiments on rats in mazes to some of the most

abstract areas of mathematics, and from thinking about how we navigate cocktail parties to

analyzing the deep structure of natural language. As we have looked at some of the key

publications in these very different areas, a number of fundamental ideas have kept

recurring.

The most basic concept that has run through the chapter is the concept of information.

Tolman’s latent-learning experiments seemed to many to show that animals (including of

course human animals) are capable of picking up information without any reinforcement

taking place. The rats wandering unrewarded through the maze were picking up and

storing information about how it was laid out – information that they could subsequently

retrieve and put to work when there was food at stake.

Chomsky’s approach to linguistics exploits the concept of information in a very differ-

ent way. His Syntactic Structures pointed linguists toward the idea that speaking and

understanding natural languages depends upon information about sentence structure –

about the basic rules that govern the surface structure of sentences and about the basic

transformation principles that underlie the deep structure of sentences.

In the work of the psychologists Miller and Broadbent we find the concept of infor-

mation appearing in yet another form. Here the idea is that we can understand perceptual

systems as information channels and use the concepts of information theory to explore

their basic structure and limits.

Hand in hand with the concept of information goes the concept of representation.

Information is everywhere, but in order to use it organisms need to represent it. Represen-

tations will turn out to be the basic currency of cognitive science, and we have seen a range

of very different examples of how information is represented in this chapter.

Tolman’s place-learning experiments introduced the idea that organisms have cognitive

maps representing the spatial layout of the environment. These maps are representations of

the environment. Turing machines incorporate a very different type of representation. They
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represent the instructions for implementing particular algorithms in their machine table. In

a similar vein, Chomsky suggested that important elements of linguistic understanding are

represented as phrase structure rules and transformational rules. And Miller showed how

representing information in different ways (in terms of different types of chunking, for

example) can affect how much information we are able to store in memory.

Information is not a static commodity. Organisms pick up information. They adapt it,

modify it, and use it. In short, organisms engage in information processing. The basic idea of

information processing raises a number of questions. One might wonder, for example,

about the content of the information that is being processed. What an organism does with

information depends upon how that information is encoded.

We saw some of the ramifications of this in Tolman’s place-learning experiments. The

difference between place learning and response learning is a difference in how information

about location is encoded. In response learning, information about location is encoded in

terms of the movements that an organism might make to reach that location. In place

learning, in contrast, information about location is encoded in terms of the location’s

relation to other locations in the environment.

Even once we know how information is encoded, there remain questions about the

mechanics of information processing. How does it actually work? We can see the germ of a

possible answer in Turing’s model of computation. Turing machines illustrate the idea of a

purely mechanical way of solving problems and processing information. In one sense

Turing machines are completely unintelligent. They blindly follow very simple instruc-

tions. And yet, if the Church–Turing thesis is warranted, they can compute anything that

can be algorithmically computed. And so, in another sense, it would be difficult to be more

intelligent than a Turing machine.

If the basic assumptions of transformational linguistics are correct, then we can see one

sphere in which the notion of an algorithm can be applied. The basic principles that

transform sentences (that take a sentence from its active to its passive form, for example,

or that transform a statement into a question) can be thought of as mechanical procedures

that can in principle be carried out by a suitably programmed Turing machine (once we

have found a way of numerically coding the basic categories of transformational grammar).

A final theme that has emerged from the authors we have studied is the idea that

information processing is done by dedicated and specialized systems. This idea comes

across most clearly in Broadbent’s model of selective attention. Here we see a complex

information-processing task (the task of making sense of the vast amounts of information

picked up by the hearing system) broken down into a number of simpler tasks (such as the

task of selecting a single information channel, or the task of working out what sentences

mean). Each of these information-processing tasks is performed by dedicated systems, such

as the selective filter or the semantic processing system.

One powerful idea that emerges from Broadbent’s model of selective attention is the

idea that we can understand how a cognitive system as a whole works by understanding how

information flows through the system. What Broadbent offered was a flowchart showing the

different stages that information goes through as it is processed by the system. Many

psychologists and cognitive scientists subsequently took this type of information-

processing flowchart to be a paradigm of how to explain cognitive abilities.
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In the next chapter we will look at how some of these ideas were put together in some of

the classic theories and models of early cognitive science.

Summary

This chapter has surveyed five of the most important precursors of what subsequently became

known as cognitive science. Cognitive science emerged when experimentalists and theoreticians

began to see connections between developments in disciplines as diverse as experimental

psychology, theoretical linguistics, and mathematical logic. These connections converge on the

idea that cognition is a form of information processing and hence that we can understand how the

mind works and how organisms negotiate the world around them by understanding how

information about the environment is represented, transformed, and exploited.

Checklist

Important Developments Leading Up to the Emergence of Cognitive Science

(1) The reaction against behaviorism in psychology

(2) Theoretical models of computation from mathematical logic

(3) Systematic analysis of the structure of natural language in linguistics

(4) The development of information-processing models in psychology

Central Themes of the Chapter

(1) Even very basic types of behavior (such as the behavior of rats in mazes) seems to involve storing

and processing information about the environment.

(2) Information relevant to cognition can take many forms – from information about the environment

to information about how sentences can be constructed and transformed.

(3) Perceptual systems can be viewed as information channels and we can study both: (a) the very

general properties of those channels (e.g., their channel capacity) (b) the way in which information

flows through those channels.

(4) Mathematical logic and the theory of computation shows us how information processing can be

mechanical and algorithmic.

(5) Much of the information-processing that goes on in the mind takes place below the threshold of

awareness.

Further Reading

The story of how cognitive science emerged is told in Gardner’s The Mind’s New Science (1985).

Flanagan’s The Science of the Mind (1991) goes further back into the prehistory of cognitive

science and psychology, as do the papers in Brook 2007. Margaret Boden’s two-volume Mind as

Machine: A History of Cognitive Science (2006) is detailed, placing most emphasis on computer

science and artificial intelligence. Abrahamsen and Bechtel’s chapter in Frankish and Ramsey 2012

provides a concise summary of the history of cognitive science. Going back still further, histories of

psychology, such as Hergenhahn and Helnley 2013, typically start with the ancient Greeks.
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The basic principles of classical and operant conditioning are covered in standard textbooks to

psychology, such as Gazzaniga, Halpern, and Heatherton 2011, Plotnik and Kouyoumdjian 2010,

and Kalat 2010. For a survey of contemporary research on both types of conditioning, see

McSweeney and Murphy 2014. Watson’s article “Psychology as the behaviorist views it” is a

classic behaviorist manifesto (Watson 1913). It can be found in the online resources. Tolman’s

article “Cognitive maps in rats and men” (1948) gives an accessible introduction to many of his

experiments and is also in the online resources. Gallistel 1990 is a very detailed and sophisticated

presentation of a computational approach to animal learning.

Turing’s paper on undecidable propositions (Turing 1936) will defeat all but graduate students in

mathematical logic (but see Petzold 2008 for a book-length explanation aimed at the general

reader). His paper “Computing machinery and intelligence” (Turing 1950) is a much more accessible

introduction to his thoughts about computers. There are several versions online, the best of which

are included in the online resources. Hodges 2014 is a new edition of the classic biography of Turing,

which inspired the film The Imitation Game. Martin Davis has written two popular books on the early

history of computers, Engines of Logic: Mathematicians and the Origin of the Computer (2001) and

The Universal Computer: The Road from Leibniz to Turing (2000). Copeland 1993 gives a more

technical, but still accessible, account of Turing machines and the Church–Turing thesis. Millican and

Clark 1996 is a collection of papers on Turing’s legacy. A more general article illustrating the

algorithmic nature of information processing is Schyns, Gosselin, and Smith 2008.

At more or less the same time as Turing was working on the mathematical theory of computation,

the neurophysiologist Warren McCulloch and logician Walter Pitts were collaborating on applying

rather similar ideas about computation directly to the brain. Their paper “A logical calculus of the

ideas immanent in nervous activity” (McCulloch and Pitts 1943) was influential at the time,

particularly in the early development of digital computers, but is rarely read now. It is reprinted in

Cummins and Cummins 2000. An accessible survey of their basic ideas can be found in Anderson

2003. See also chapter 2 of Arbib 1987 and Piccinini 2004, as well as Schlatter and Aizawa 2008.

Most people find Chomsky’s Syntactic Structures pretty hard going. Linguistics tends to be

technical, but Chomsky’s article “Linguistics and philosophy,” reprinted in Cummins and Cummins

2000, contains a fairly informal introduction to the basic distinction between surface structure and

deep structure. Chapter 2 of Newmeyer 1986 is a good and accessible introduction to the

Chomskyan revolution. More details can be found in standard textbooks, such as Cook and

Newson 2007, Isac and Reiss 2013, and O’Grady et al. 2010. Chomsky’s rather harsh review of

B. F. Skinner’s book Verbal Behavior (Chomsky 1959) is often described as instrumental in the

demise of radical behaviorism – and hence in bringing about the so-called cognitive revolution.

The review is reprinted in many places and can be found in the online resources. Pinker 1994

presents a broadly Chomskyan perspective on language for a general audience.

The cocktail party phenomenon was first introduced in Cherry 1953. A concise summary of the

cocktail party phenomenon can be found in McDermott 2009. Miller’s 1956 article is widely available

and is included in the online resources. Broadbent’s model of selective attention was the first in a long

line of models. These are reviewed in standard textbooks. See, for example, chapter 5 of Gleitman,

Fridlund, and Reisberg 2010. Christopher Mole’s chapter on attention in Margolis, Samuels, and Stich

2012 summarizes Broadbent’s influence aswell as recent departures fromBroadbent. Driver 2001 is an

article-length survey of theories of selective attention in the twentieth century.
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Overview

Chapter 1 explored the prehistory of cognitive science in the first half of the twentieth century. In

this second chapter of this selective historical survey we will look closely at three milestones in the

development of cognitive science. In each of them we start to see some of the theoretical ideas

canvassed in the previous section being combined and applied to understanding specific cognitive

systems and cognitive abilities.

Section 2.1 looks at a powerful and influential computer model of what it is to understand a

natural language. Terry Winograd’s computer model SHRDLU illustrates how grammatical rules

might be represented in a cognitive system and integrated with other types of information about

the environment. SHRDLU’s programming is built around specific procedures that carry out fairly

specialized information-processing tasks in an algorithmic (or at least quasi-algorithmic way).

The idea that the digital computer is the most promising model for understanding the mind was

at the forefront of cognitive science in the 1960s and 1970s. But even in the 1970s it was under

pressure. Section 2.2 looks at the debate on the nature of mental imagery provoked by some very

influential experiments in cognitive psychology. These experiments seemed to many theorists to
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show that some types of cognitive information processing involve forms of representation very

different from how information is represented in, and manipulated by, a digital computer.

The third section introduces what many cognitive scientists still consider to be cognitive

science’s greatest single achievement – the theory of early visual processing developed by David

Marr. Marr’s theory of vision was highly interdisciplinary, drawing on mathematics, cognitive

psychology, neuroscience, and the clinical study of brain-damaged patients and it was built on a

hierarchy of different levels for studying cognition that was for a long time taken to define the

method of cognitive science.

2.1 Language and Micro-worlds

The human ability to speak and understand natural language is one of our most sophisti-

cated cognitive achievements. We share many types of cognitive ability with nonlinguistic

animals. Many cognitive scientists assume, for example, that there are significant continu-

ities between human perceptual systems and those of the higher primates (such as chim-

panzees and macaque monkeys), which is why much of what we know about the neural

structure of the human perceptual system is actually derived from experiments on

monkeys. (More on this in Chapters 3 and 9.) And there is powerful evidence that

prelinguistic infants are capable of representing and reasoning about their physical and

social environment in comparatively sophisticated ways. (See Chapter 11 for more details.)

Nonetheless, just as in human development (ontogeny) there is a cognitive explosion that

runs more or less in parallel with the acquisition of language, much of what distinguishes

humans from other animals is intimately bound up with our linguistic abilities. Language is

far more than a tool for communication. It is a tool for thinking. Without language there

would be no science and no mathematics. Language allows us to engage in incredibly

sophisticated types of coordinated behavior. It underpins our political and social structures.

In many ways, Homo linguisticuswould be a more accurate name than Homo sapiens.

Unsurprisingly, then, the study of natural language has always been at the center of

cognitive science. If cognitive scientists want to understand the human mind then they

have to confront the fundamental challenge posed by our understanding of natural

language. As we saw in the last chapter, Chomsky’s diagnosis of what he saw as the

insuperable challenges facing a behaviorist account of language was very important in

setting the stage for the cognitive revolution. So too was the discovery, also due to

Chomsky, of ways of describing the underlying structures that lie beneath the patterns of

surface grammar.

But Chomsky’s transformational linguistics has relatively little to say about how linguis-

tic understanding actually takes place. It is one thing to describe the abstract structure of

human language and quite another to explain how human beings can master that abstract

structure. What Chomsky’s work tells us (if it is indeed the correct way to think about the

deep structure of language) is what we know when we understand a language. It tells us

what we have to know. But it has nothing to say about how that knowledge is stored or

how it is used.
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Natural Language Processing: Winograd,
Understanding Natural Language (1972)

The first study that we examine in this chapter confronts this challenge head on. One way

of trying to model how we store and use linguistic knowledge is to build a machine that is

capable of some form of linguistic understanding. The early days of artificial intelligence (AI)

saw a number of attempts to write computer programs that could engage in some very

elementary forms of conversational exchanges, but none of these programs was capable of

anything that really resembled linguistic understanding.

The aim of programs such as ELIZA (written by Joseph Weizenbaum in 1966) was to

simulate human conversation. The basic idea behind ELIZA (which, depending upon who

one asks, was either based upon or intended to parody typical conversational exchanges

between psychotherapists and their patients) was to create the illusion of conversation by

rephrasing statements as questions and by programming the computer to give certain fixed

responses where this is not possible. A sample “conversation” is given in Box 2.1.

Although ELIZA is said to have fooled a number of people into thinking that it was a

human (including the unknowing participant in the conversation recorded in the box)

nobody has ever suggested that it displays anything like a genuine understanding of

BOX 2.1 A Conversation with ELIZA

ELIZA’s responses are in uppercase.

Men are all alike

IN WHAT WAY?

They are always bugging us about something or other

CAN YOU THINK OF A SPECIFIC EXAMPLE?

Well, my boyfriend made me come here

YOUR BOYFRIEND MADE YOU COME HERE?

He says I’m depressed much of the time

I’M SORRY TO HEAR THAT YOU ARE DEPRESSED

It’s true. I am unhappy

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY?

I need some help. That much seems certain

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP?

Perhaps I could learn to get along with my mother

TELL ME MORE ABOUT YOUR FAMILY

(from Boden 1977: 106–7)
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language. ELIZA does not in any sense analyze the syntactic structure or the meaning of

the sentences that it encounters. It is simply programmed to respond to certain cues by

making one of a small set of responses. Nor could ELIZA use the conversations in which it

engaged to report on or navigate its environment. Chatbot programs such as ELIZA are

interesting for many reasons, but not as serious models of how we understand and use

language.

Exercise 2.1 Explain in your own words what you think we can learn from programs such as

ELIZA. Is it important that a person might be fooled by ELIZA into thinking that we were

communicating with another human being?

Terry Winograd’s program SHRDLU, initially presented in his 1970 doctoral dissertation

at MIT, was one of the first attempts to write a program that was not just trying to simulate

conversation, but that was capable of using language to report on its environment, to plan

actions, and to reason about the implications of what is being said to it.

One of the distinctive features of SHRDLU is that it is programmed to deal with a very

limited micro-world (as opposed to being a general-purpose language program, which is

what ELIZA and other chatterbot programs are, in their very limited ways). The SHRDLU

micro-world is very simple. It consists simply of a number of colored blocks, colored

pyramids, and a box, all located on a tabletop, as illustrated in Figure 2.1. (The micro-

world is a virtual micro-world, it should be emphasized. Everything takes place on a

computer screen.)

Does the shortest thing the tallest pyramid’s support
supports support anything green?

Figure 2.1 A question for SHRDLU about its virtual micro-world. (Adapted from Winograd 1972)
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SHRDLU is capable of various actions in the micro-world, which it can carry out through

a (virtual) robot arm. It can pick up the blocks and pyramids, move them around, and put

them in the box. Corresponding to the simplicity of the micro-world, SHRDLU’s language

is relatively simple. It only has the tools to talk about what is going on in the micro-world.

SHRDLU was very important in the development of cognitive science, for three main

reasons. First, it gave a powerful illustration of how abstract rules and principles such as

those in the sort of grammar that we might find in theoretical linguistics could be practic-

ally implemented. If we assume that a speaker’s understanding of language is best under-

stood as a body of knowledge, then SHRDLU provided a model of how that knowledge

could be represented by a cognitive system and how it could be integrated with other, more

general, forms of knowledge about the environment.

Second, SHRDLU illustrates the general approach of trying to understand and model

cognitive systems by breaking them down into distinct components, each carrying out a

specific information-processing task. One of the many interesting things about SHRDLU is

that these distinct components are not completely self-contained. The separate processing

systems collaborate in solving information-processing problems. There is cross-talk

between them, because the programs for each processing system allow it to consult other

processing systems at particular moments in the computation.

Finally, the SHRDLU is based on the fundamental assumption that understanding

language is an algorithmic process. In Winograd’s own words, “All language use can be

thought of as a way of activating procedures within the hearer” (1973: 104). Each com-

ponent system is essentially made up of a vast number of procedures that work algorith-

mically to solve very specific problems. The system as a whole works because of how these

procedures are linked up and embedded within each other.

SHRDLU in Action

As is often the case in so-called classical cognitive science, the best way to understand what is

going on in SHRDLU is to work from the top down – to start by looking at the general overall

structure and then drill down into the details. Strictly speaking, SHRDLU consists of twelve

different systems. Winograd himself divides these into three groups. Each group carries out a

specific job. The particular jobs that Winograd identifies are not particularly surprising. They

are exactly the jobs that one would expect any language-processing system to carry out.

1 The job of syntactic analysis: SHRDLU needs to be able to “decode” the grammatical structure

of the sentences that it encounters. It needs to be able to identify which units in the sentence

are performing which linguistic function. In order to parse any sentence, a language user

needs to work out which linguistic units are functioning as nouns (i.e., are picking out

objects) and which are functioning as verbs (i.e., characterizing events and processes).

2 The job of semantic analysis: Understanding a sentence involves much more than decoding

its syntactic structure. The system also needs to assign meanings to the individual words in

a way that reveals what the sentence is stating (if it is a statement), or requesting (if it is a

request). This takes us from syntax to semantics.
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3 The job of integrating the information acquired with the information the system already possesses:

The system has to be able to explore the implications of what it has just learned for the

information it already has. Or to call upon information it already has in order to obey some

command, fulfill a request, or answer a question. These all require ways of deducing and

comparing the logical consequences of stored and newly acquired information.

We can identify distinct components for each of these jobs – the syntactic system, the

semantic system, and the cognitive-deductive system. Winograd does not see these as operat-

ing in strict sequence. It is not the case that the syntactic system does its job producing a

syntactic analysis, and then hands that syntactic analysis over to the semantic system,

which plugs meanings into the abstract syntactic structure, before passing the result on to

the cognitive-deductive system. In SHRDLU all three systems operate concurrently and are

able to call upon each other at specific points.

What makes this possible is that, although all three systems store and deploy different

forms of knowledge, these different forms of knowledge are all represented in a similar way.

They are all represented in terms of procedures.

The bestway to understandwhat procedures are is to look at some examples. Let us start with

the syntactic system, since this drives the whole process of language understanding. One very

fundamental “decision” that the syntactic systemhas tomake is whether its input is a sentence

or not. Let us assume that we are dealing with a very simple language that only contains words

in the following syntactic categories:Noun (e.g., “block”or “table”), IntransitiveVerb (e.g.,“___

is standing up”), Transitive Verb (e.g., “___ is supporting ___”), Determiner (e.g., “the” or “a”).

Figure 2.2 presents a simple procedure for answering this question. Basically, what the

SENTENCE program does is exploit the fact that every grammatical sentence must contain

PARSE a NP

PARSE a VP

RETURN failure

Yes

Yes

No

No

No

Yes
Any words left?

RETURN success

Figure 2.2 An algorithm for determining whether a given input is a sentence or not. (Adapted

from Winograd 1972)
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a noun phrase (NP) and a verb phrase (VP). It tests for the presence of a NP; tests for the

presence of a VP; and then checks that there is no extra “junk” in the sentence.

Of course, in order to apply this procedure the syntactic system needs procedures for

testing for the presence of noun phrases and verb phrases. This can be done in much the

same way – by checking in an algorithmic manner whether the relevant syntactic units are

present. Figure 2.3 gives two procedures that will work in our simple language.

PARSE a 

DETERMINER

PARSE a

NOUN

RETURN

success

RETURN failure

Yes

Yes

No

No

PARSE a

VERB

Is it 

TRANSITIVE?

Is it

INTRANSITIVE?

RETURN failure

Yes

No

No

Yes

No

PARSE a NP

RETURN

success

No

Yes

Yes

Figure 2.3 Algorithms for identifying noun phrases and verb phrases. (Adapted from Winograd

1973)
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Moving to the job of semantic analysis, SHRDLU represents the meanings of words by

means of comparable procedures. Instead of procedures for picking out syntactic categor-

ies, these procedures involve information about the micro-world and actions that the

system can perform in the micro-world.

One of the words in SHRDLU’s vocabulary is CLEARTOP. We can say that something

(say, a block) is CLEARTOP when it does not have anything on it. CLEARTOP can also

function as a command (as the command to remove anything resting on the block).

CLEARTOP is represented in SHRDLU by the very simple procedure presented in

Figure 2.4.

This definition of CLEARTOP exploits other “concepts,” such as SUPPORT and GET RID

OF. Each of these other concepts has its own procedure, which may well call upon the

CLEARTOP procedure.

To see how these procedures work to allow SHRDLU to follow instructions in the micro-

world and answer questions about it we can look at the first few exchanges in a sample

dialog described by Winograd in his 1973 paper. SHRDLU’s contributions are in capital

letters, while the sentences in italics were typed by a person. The commentary in normal

type is by Winograd.

1. Pick up a big, red block.

OK

The system answers “OK” when it carries out a command. In order to pick up the red

block, it had to clear it off by finding a space for the green one and moving it away. The

result is shown in Figure 2.5.

2. Grasp the pyramid.

I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids in the scene and the program knows that phrases beginning

with “the” are intended to refer to a specific object the speaker has in mind. So SHRDLU

does nothing.

Go
Does X SUPPORT 

an OBJECT Y?

Assert that

X is CLEARTOP

Yes

No

GET-RID-OF Y

Figure 2.4 Procedure for applying the command CLEARTOP. (Adapted from Winograd 1972)
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3. Find a block which is taller than the one you are holding and put it in the box.

The situation is depicted in Figure 2.5. The system has to figure out what is meant by

“one” and “it,” as well as use deduction to decide which block it is holding.

BY “IT” I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM

HOLDING

There were two possible referents for “it”: the one selected, and “the one you are

holding,”

OK

The hand has to set down the red block to pick up the taller blue one. We are now at

Figure 2.6.

4. What does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK

5. What is the pyramid supported by?

THE BOX

Figure 2.5 SHRDLU acting on the initial command to pick up a big red block. See the dialog in the

text for what led up to this. (Adapted from Winograd 1972: 8)
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Earlier the system responded to “the pyramid” by saying “I DON’T UNDERSTAND

WHICH PYRAMID YOU MEAN.” Now SHRDLU has identified the pyramid that was

meant – the pyramid just mentioned in the response to the previous question.

Certainly, SHRDLU has its limitations. No one (certainly not Winograd) has ever

claimed that it provides an accurate model of human language use – or even of a small

segment of human language use. As Winograd himself was quick to acknowledge, SHRDLU

does not really do justice to how conversations actually work in real life. Conversations are

social interactions, not simply sequences of unconnected questions and answers. They

involve agents trying to make sense of the world and of each other simultaneously.

Every level of linguistic understanding involves assumptions and guesses about what

the other partner in the conversation is trying to communicate. It also involves assump-

tions and guesses about what they are trying to achieve. These are not always the same. In

making and assessing those assumptions and guesses we use all sorts of heuristics and

principles. We tend to assume, for example, that people generally tell the truth; that they

don’t say things that are pointless and uninformative; and that what they say reflects what

they are doing more generally. This is all part of what linguists call the pragmatics of

Find a block which is taller than the one you 
are holding and put it in the box.

Figure 2.6 SHRDLU completing instruction 3 in the dialog: “Find a block which is taller than the

one you are holding and put it in the box.” (Adapted from Winograd 1972: Figure 3)
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conversation. But there is nothing in SHRDLU’s programming that even attempts to do

justice to pragmatics.

Exercise 2.2 Can you identify other ways in which SHRDLU falls short of modeling human

understanding of natural language?

But to criticize SHRDLU for neglecting pragmatics, or for steering clear of complex

linguistic constructions such as counterfactuals (statements about what would have

happened, had things been different) is to miss what is genuinely pathbreaking about it.

SHRDLU illustrates a view of linguistic understanding as resulting from the interaction of

many, independently specifiable cognitive processes. Each cognitive process does a particular

job – the job of identifying noun phrases, for example.Wemake sense of the complex process

of understanding a sentence by seeing how it is performed by the interaction ofmany simpler

processes (or procedures). These cognitive processes are themselves understood algorithmic-

ally (although this is not something thatWinograd himself stresses). They involve processing

inputs according to rules. Winograd’s procedures are sets of instructions that can be followed

mechanically, just as in the classical model of computation (see Section 1.2).

2.2 How Do Mental Images Represent?

One way to understand a complex cognitive ability is to try to build a machine that has

that ability (or at least some primitive form of it). The program that the machine runs is a

model of the ability. Often the ability being modeled is a very primitive and simplified form

of the ability that we are trying to understand. This is the case with SHRDLU, which was

intended to model only a very basic form of linguistic understanding. But even in cases like

that, we can still learn much about the basic principles of cognitive information processing

by looking to see how well the model works. This is why the history of cognitive science

has been closely bound up with the history of artificial intelligence.

We can think of artificial intelligence, or at least some parts of it, as a form of experimen-

tation. Particular ideas about how the mind works are written into programs and then we

“test” those ideas by seeing how well the programs work. But artificial intelligence is not

the only way of developing and testing hypotheses open to cognitive scientists. Cognitive

scientists have also learned much from the much more direct forms of experiment carried

out by cognitive psychologists.

As we saw in the previous chapter, the emergence of cognitive psychology as a serious

alternative to behaviorism in psychology was one of the key elements in the emergence of

cognitive science. A good example of how cognitive psychology can serve both as an

inspiration and as a tool for cognitive science came with what has come to be known as

the imagery debate.

The imagery debate began in the early 1970s, inspired by a thought-provoking set of

experiments on mental rotation carried out by the psychologist Roger Shepard in collabor-

ation with Jacqueline Metzler, Lynn Cooper, and other scientists. The initial experiments

(and many of the follow-up experiments) are rightly recognized as classics of cognitive
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psychology. From the perspective of cognitive science, however, what is most interesting

about them is the theorizing to which they gave rise about the format in which infor-

mation is stored and the way in which it is processed. This was one of the first occasions

when cognitive scientists got seriously to grips with the nature and format of mental

representation – a theme that has dominated cognitive science ever since.

Mental Rotation: Shepard and Metzler,
“Mental Rotation of Three-Dimensional Objects” (1971)

The original mental rotation experiments are easy to describe. Subjects were presented

with drawings of pairs of three-dimensional figures. Figure 2.7 contains examples of

these pairs.

A

B

C

Figure 2.7 Examples of the three-dimensional figures used in Shepard and Metzler’s 1971

studies of mental rotation. Subjects were asked to identify which pairs depicted the same figure at

different degrees of rotation. (Adapted from Shepard and Metzler 1971)
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Each figure is asymmetric and resembles its partner. In two cases the figures resemble

each other because they are in fact the same figure at different degrees of rotation. In a third

case the figures are different. The subjects were asked to identify as quickly as possible pairs

of drawings where the second figure is the same as the first, but rotated to a different angle.

(You can do this experiment for yourself. Several versions of the Shepard–Metzler paradigm

can be carried out online. See the Further Reading for an example. Putting “mental rota-

tion” into a search engine will find others.)

Exercise 2.3 Which pair is the odd one out? In the pair with two distinct figures, how are those

figures related to each other?

Shepard and Metzler found that there is a direct, linear relationship between the length

of time that subjects took to solve the problem and the degree of rotation between the two

figures (see Figure 2.8). The larger the angle of rotation (i.e., the further the figures were

from each other in rotational terms), the longer subjects took correctly to work out that the

two drawings depicted the same figure. And the length of time increased in direct propor-

tion to the degree of rotation. These findings have proved very robust. Comparable effects

have been found in many follow-up experiments. Much more controversial is how to

interpret what is going on.

The subjects in the original experiment were not asked to solve the problem in any

particular way. They were simply asked to pull one lever if the two pictures represented the

same figure, and another lever if the pictures represented different figures. The explanation

that comes quickest to mind, though, is that the subjects solved the problem by mentally

rotating one figure to see whether or not it could be mapped onto the other. This would

5

2

1

3

0

4

20 40

Angle of rotation (degrees)

(a) Rotation in two dimensions

60 80 100 120 140 160 1800

5

2

1

3

0

4

20 40

(b) Rotation in three dimensions

60 80 100 120 140 160 1800

Figure 2.8 Results of Shepard and Metzler’s 1971 studies of mental rotation. (a) Mean reaction

time for shape rotation in two dimensions. (b) Mean reaction time for shape rotation in three

dimensions.
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certainly provide a neat explanation of the findings. And this is indeed how Shepard,

Metzler, and many others did interpret them (not least because that is what many of the

subjects described themselves as doing). This interpretation of the experiments raises some

fundamental questions about the format in which information is encoded and manipu-

lated in tasks of this type.

Exercise 2.4 Present in your own words Shepard and Metzler’s conclusion. Explain their

reasoning. What sort of assumptions does it rest on?

Suppose that we take the subject’s report of what they are doing in the experiments at

face value. Suppose, that is, that we think of the subjects as rotating mental images in their

“mind’s eye.” It seems on the face of it that this is really just an application of a skill that we

use all the time – the skill of transforming mental images in order to calculate, for example,

whether one’s car will fit into a tight parking space, or where a tennis ball will land. The

question is not really whether we have such skills and abilities, but rather what makes them

possible. And this is really a question about how the brain processes information.

The rotation in my “mind’s eye” does not explain how I solve the problem. It is itself

something that needs to be explained. What is the cognitive machinery that makes it

possible for me to do what I might describe to someone else as rotating the mental image of

a shape? Most cognitive scientists think that our conscious experience of rotating a mental

image is the result of unconscious information processing. Information about the shape is

derived from perception and then transformed in various ways that enable the subject to

determine whether the two drawings are indeed drawings of the same shape. But the

question is: How is that information represented and how is it transformed?

Information Processing in Mental Imagery

The standard way of thinking about the mind as an information processor takes the digital

computer as a model. (This was almost unchallenged in the early 1970s, and remains a

popular view now, although we now have a much clearer sense of some alternative ways of

thinking about information processing.) Digital computers store and manipulate infor-

mation in a fixed format. Essentially, all forms of information in a digital computer are

represented using the binary numerals 0 and 1.

Each binary digit carries a single unit of information (a bit). Within the computer these

units of information are grouped into words – a byte, for example, is an 8-bit word that can

carry 256 units of information. This way of carrying information in discrete quantities is

often called digital information storage.

One feature of digitally encoded information is that the length of time it takes to process

a piece of information is typically a function only of the quantity of information (the

number of bits that are required to encode it). The particular information that is encoded

ought not to matter. But what the mental rotation experiments seem to show is that there

are information-processing tasks that take varying amounts of time even though the

quantity of information remains the same.
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Exercise 2.5 Why does a byte carry 256 units of information? (Hint: There are eight digits, each

of which can be in one of two states – so how many possible states are there?)

In order to get an intuitive picture of what is going on here and why it might

seem puzzling, look again at the experimental drawings in Figure 2.7 and think

about how each of them might be digitally encoded. Suppose that we think of each

drawing as divided into many small boxes (rather like pixels on a television screen or

computer monitor). Since the drawings are in black and white we can convey a lot of

information about the drawing by stating, for each pixel, whether it is black or white. But

this will not give us a full characterization, since the figures are represented three-

dimensionally. This means that our characterization of each pixel that represents part of

a surface will have to include a value for the surface’s degree of orientation, degree of

brightness, and so on.

Now, suppose that this has been done and that we have a pixel-by-pixel description of

each drawing. This will be a collection of pixel descriptions. Each pixel description is

simply a set of numbers that specifies the values on the relevant dimensions at the

particular pixel locations. The overall pixel-by-pixel description of each drawing puts

all those individual descriptions into an ordering that will allow it to be mathematically

manipulated. One way of doing this would be to assign a set of coordinates to each pixel. In

any event, the point is that each drawing can be represented by a set of numbers.

If this is how information is encoded, then solving the problem is essentially a matter of

comparing two numerical descriptions to see if one can be mapped onto the other. Solving

this problem is a tricky piece of mathematics that we fortunately do not have to go into,

but there is no obvious reason why it should take longer to solve the problem for pairs of

figures that are at greater degrees of rotation from each other than for pairs that are at

smaller degrees from each other – and certainly no reason why there should be a linear

relationship between reaction time and degree of rotation.

For reasons such as these, then, many cognitive scientists have suggested that mental

rotation tasks tap into ways of encoding information very different from how information

is encoded in a digital computer.

One distinctive feature of how information is represented in digital computers (what is

often called digital representation) is that the connection between what we might think of

as the unit of representation and what that unit represents is completely arbitrary. There is

no reason, for example, why we should use the symbol “0” to represent a black pixel and

the symbol “1” to represent a white pixel, rather than the other way around. The symbol

“0” represents a black pixel because that is how the computer has been set up.

Contrast this with how, for example, a map represents a geographical region. Here there

is a large-scale resemblance between the principal geographical features of the region and

the discernible features of the map – if there is no such resemblance then the map will not

be much use. The weaving and winding of a river is matched by the weaving and winding

of the line on the map that represents the river. The outlines of a region of forestry are

matched by the edges of the green patch on the map. Undulations in the terrain can be

mapped onto the contour lines. And so on. A map is an excellent example of an imagistic
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representation. The basic characteristic of an imagistic representation is that representation

is secured through resemblance.

Exercise 2.6 Can you think of other differences between digital representation and imagistic

representation?

One popular interpretation of the mental rotation experiments is as showing

that at least some types of information are represented imagistically at the level of subcon-

scious information processing. It is not just that we have the experience of consciously

rotating figures in our mind’s eye. The shapes are also represented imagistically in the

subconscious information processing that makes possible these types of conscious

experience.

The point of this interpretation is that certain operations can be carried out on imagi-

stically represented information that cannot be carried out on digitally represented infor-

mation. So, for example, it is relatively straightforward to think of rotating an imagistic

representation, but as we saw earlier, difficult to think of rotating a digital representation.

This gives us one way of explaining what is going on in the mental rotation experiments.

The idea that the information processing in mental imagery involves operations on

imagistic representations also makes sense of many of the other effects identified in the

experimental literature on imagery. So, for example, in a famous experiment carried out by

Stephen Kosslyn in 1973 subjects were asked to memorize a set of drawings like those

illustrated in Figure 2.9.

Figure 2.9 Examples of vertically and horizontally oriented objects that subjects were asked to

visualize in Kosslyn’s 1973 scanning study. (Adapted from Kosslyn, Thompson, and Ganis 2006)
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Kosslyn then gave them the name of one of the objects (e.g., “airplane”) and asked them

to focus on one end of the memorized drawing. The experiment consisted of giving the

subjects the names of possible parts of the object (e.g., “propeller”) and asking them to

examine their images to see whether the object drawn did indeed have the relevant part

(which it did on 50 percent of the trials). The subjects pushed a button only if they did

indeed see the named part in their image of the drawn object.

Kosslyn found an effect rather similar to that in the mental rotation studies, namely,

that the length of time it took the subjects to answer varied according to the distance of the

parts from the point of focus. If the subjects were asked to focus on the tail of the plane, it

would take longer for them to confirm that the plane had a propeller than that there was

not a pilot in the cockpit.

Kosslyn’s interpretation of his own experiment was that the type of information pro-

cessing involved in answering the test questions involves scanning imagistic representa-

tions. Instead of searching for the answer within a digitally encoded database of

information about the figures, the subjects scan an imagistically encoded mental image

of the airplane.

Exercise 2.7 Can you think of a way of explaining the results of Kosslyn’s experiments without

the hypothesis of imagistically encoded information?

This takes us to the heart of a fundamental issues in cognitive science. Almost all

cognitive scientists agree that cognition is information processing. But the imagery debate

shows that there are competing models of how information is stored and how it is

processed. We will return to these issues in later chapters.

2.3 An Interdisciplinary Model of Vision

The mind can be studied at many different levels. We can study the mind from the bottom

up, beginning with individual neurons and populations of neurons, or perhaps even lower

down, with molecular pathways whose activities generate action potentials in individual

neurons, and then trying to build up from that to higher cognitive functions. Or we can

begin from the top down, starting out with general theories about the nature of thought

and the nature of cognition and working downward to investigate how corresponding

mechanisms might be instantiated in the brain. On either approach one will proceed via

distinct levels of explanation that often have separate disciplines corresponding to them.

A fundamental problem for cognitive science is working out how to combine and integrate

different levels of explanation.

Levels of Explanation: Marr’s Vision (1982)

The earliest systematic approach to tackling this problem is David Marr’s model of the

human visual system in his 1982 book Vision: A Computational Investigation into the Human
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Representation and Processing of Visual Information. Marr’s conception of how different levels

of explanation connect up with each other has been deeply influential, as a blueprint for

practicing scientists and as a model for understanding the nature of explanation in cogni-

tive science.

Marr distinguishes three different levels for analyzing cognitive systems. At the top is

the computational level. Here cognitive scientists analyze in very general terms the particular

type of task that the system performs. The tasks of an analysis at the computational

level are:

1 to translate a general description of the cognitive system into a specific account of the

particular information-processing problem that the system is configured to solve, and

2 to identify the constraints that hold upon any solution to that information-

processing task.

The guiding assumption here is that cognition is ultimately a matter of information

processing. A computational analysis identifies the information with which the cognitive

system has to begin (the input to that system) and the information with which it needs to

end up (the output from that system).

Exercise 2.8 Think of a specific cognitive system and explain what it does in information-

processing terms.

Marr calls the next level down the algorithmic level. The algorithmic level tells us how the

cognitive system actually solves the specific information-processing task identified at the

computational level. It tells us how the input information is transformed into the output

information. It does this by giving algorithms that effect that transformation.

So, an algorithmic-level explanation takes the form of specifying detailed sets of

information-processing instructions that will explain how, for example, information from

the sensory systems about the distribution of light in the visual field is transformed into a

representation of the three-dimensional environment around the perceiver.

In contrast, the principal task at the implementational level is to find a physical realization

for the algorithm – that is to say, to identify physical structures that will realize the

representational states over which the algorithm is defined and to find mechanisms at

the neural level that can properly be described as computing the algorithm in question.

Exercise 2.9 Explain in your own words the difference between algorithmic and

implementational explanations.

Table 2.1 is a table from Marr’s book illustrating how the different levels of explanation

fit together. Marr’s approach is a classic example of top-down analysis. He starts with high-

level analysis of the specific information-processing problems that the visual system con-

fronts, as well as the constraints under which the visual system operates. At each stage of

the analysis these problems become more circumscribed and more determinate. The

suggestions offered at the algorithmic and implementational levels are motivated by

discussions of constraint and function at the computational level – that is, by considering
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which features of the environment the organism needs to model and the resources it has

available to it.

Applying Top-Down Analysis to the Visual System

We can get a better sense of how this general model of top-down analysis works in practice

by looking at how Marr applied it in thinking about human vision.

The first point to note is that Marr’s model is very interdisciplinary. His thinking at the

computational level about what the visual system does was strongly influenced by research

into brain-damaged patients carried out by clinical neuropsychologists. In his book he

explicitly refers to Elizabeth Warrington’s work on patients with damage to the left and

right parietal cortex – areas of the brain that when damaged tend to produce problems in

perceptual recognition.

Warrington noticed that the perceptual deficits of the two classes of patient are funda-

mentally different. Patients with right parietal lesions are able to recognize and verbally

identify familiar objects provided that they can see them from familiar or “conventional”

perspectives. From unconventional perspectives, however, these patients would not only

fail to identify familiar objects but would also vehemently deny that the shapes they

perceived could possibly correspond to the objects that they in fact were. Figure 2.10

provides an example of conventional and unconventional perspectives.

Patients with left parietal lesions showed a diametrically opposed pattern. Although left

parietal lesions are often accompanied by language problems, patients with such lesions

tend to be capable of identifying the shape of objects. They are as successful as normal

subjects on matching tasks, and are perfectly able to match conventional and unconven-

tional representations of the same object.

TABLE 2.1 A table illustrating the three different levels that Marr identified for

explaining information-processing systems

COMPUTATIONAL

THEORY

REPRESENTATION AND

ALGORITHM

HARDWARE

IMPLEMENTATION

What is the goal of the

computation, why is it

appropriate, and what is the

logic of the strategy by which

it can be carried out?

How can this computational

theory be implemented? In

particular, what is the

representation for the input

and output, and what is the

algorithm for the

transformation?

How can the

representation and

algorithm be realized

physically?

Note. Each level has its own characteristic questions and problems. (From Marr 1982)
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Marr drew two conclusions about how the visual system functions from Warrington’s

neuropsychological observations. First, information about the shape of an object must be

processed separately from information about what the object is for and what it is called.

Second, the visual system can deliver a specification of the shape of an object even when

the perceiver is unable to recognize the object.

Here is Marr describing how he used these neuropsychological data to work out the basic

functional task that the visual system performs.

Elizabeth Warrington had put her finger on what was somehow the quintessential fact

about human vision – that it tells us about shape and space and spatial arrangement.

Here lay a way to formulate its purpose – building a description of the shapes and

positions of things from images. Of course, that is by no means all that vision can do;

it also tells us about the illumination and about the reflectances of the surfaces that

make the shapes – their brightnesses and colors and visual textures – and about their

motion. But these things seemed secondary; they could be hung off a theory in which

the main job of vision was to derive a representation of shape.

(Marr 1982: 7)

So, at the computational level, the visual system’s basic task is to construct a representation

of the three-dimensional shape and spatial arrangement of an object in a form that will

allow that object to be recognized. Since ease of recognition is correlated with the ability to

extrapolate from the particular vantage point from which an object is viewed, Marr

concluded that this representation of object shape should be on an object-centered rather

than an egocentric frame of reference (where an egocentric frame of reference is one

Figure 2.10 Two images of a bucket. A familiar/conventional view is on the left, and an

unfamiliar/unconventional view is on the right. (From Warrington and Taylor 1973)
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centered on the viewer). This, in essence, is the theory that emerges at the

computational level.

Exercise 2.10 Explain in your own words why Marr drew the conclusions he did from Elizabeth

Warrington’s patients.

Analysis at the algorithmic level calls for a far more detailed account of how the general

information-processing task identified at the computational level is carried out. What we

are looking for now is an algorithm that can take the system from inputs of the appropriate

type to outputs of the appropriate type. This raises a range of new questions. How exactly is

the input and output information encoded? What are the system’s representational primi-

tives (the basic “units” over which computations are defined)? What sort of operations is

the system performing on those representational primitives to carry out the information-

processing task?

A crucial part of the function of vision is to recover information about surfaces in the

field of view – in particular, information about their orientation; how far they are from the

perceiver; and how they reflect light. In Marr’s theory this information is derived from a

series of increasingly complex and sophisticated representations, which he terms the primal

sketch, the 2.5D sketch, and the 3D sketch.

The primal sketch makes explicit some basic types of information implicitly present in

the retinal image. These include distributions of light intensity across the retinal image –

areas of relative brightness or darkness, for example. The primal sketch also aims to

represent the basic geometry of the field of view. Figure 2.11 gives two illustrations. Note

how the primal sketch reveals basic geometrical structure – an embedded triangle in the left

figure and an embedded square in the right.

The next information-processing task is to extract from the primal sketch information

about the depth and orientation of visible surfaces from the viewer’s perspective. The

Figure 2.11 Two examples of Marr’s primal sketch, the first computational stage in his analysis

of the early visual system. The primal sketch contains basic elements of large-scale organization

(the embedded triangle in the left-hand sketch, for example). (Adapted from Marr 1982)
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result of this information processing is the 2.5D sketch. For every point in the field of view,

the 2.5D sketch represents how far it is from the observer, as illustrated in Figure 2.12.

The 2.5D sketch is viewer-centered. It depends upon the viewer’s particular vantage

point. One of the crucial things that the visual system allows us to do, though, is to keep

track of objects even though their visual appearance changes from the viewer’s perspective

(because either the object or the viewer is moving, for example). This requires a stable

representation of object shape that is independent of the viewer’s particular viewpoint.

This viewer-independent representation is provided by the 3D sketch, as illustrated in

Figure 2.13.

At the algorithmic level the job is to specify these different sketches and explain how the

visual system gets from one to the next, starting with the basic information arriving at the

retina. Since the retina is composed of cells that are sensitive to light, this basic information

is information about the intensity of the light reaching each of those cells.

What are the starting-points for the information processing that will yield as its output

an accurate representation of the layout of surfaces in the distal environment? Marr’s

answer is that the visual system needs to start with discontinuities in light intensity,

because these are a good guide to boundaries between objects and other physically relevant

properties. Accordingly the representational primitives that he identifies are all closely

correlated with changes in light intensity.

Figure 2.12 An example of part of the 2.5D sketch. The figure shows orientation information but

no depth information. (Adapted from Marr 1982)
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These representational primitives include zero-crossings (registers of sudden changes in

light intensity), blobs, edges, segments, and boundaries. The algorithmic description of the

visual system takes a representation formulated in terms of these representational primi-

tives as the input, and spells out a series of computational steps that will transform this

input into the desired output, which is a representation of the three-dimensional perceived

environment.

Moving down to the implementational level, a further set of disciplines come into play.

In thinking about the cognitive architecture within which the various algorithms com-

puted by the visual system are embedded, we will obviously need to take into account the

basic physiology of the visual system – and this in turn is something that we will need to

think about at various different levels. Marr’s own work on vision contains relatively little

discussion of neural implementation. But the table from his book shown here as Figure 2.14

illustrates where the implementational level fits into the overall picture. Figure 2.15 is a

more recent attempt at identifying the neural structures underlying the visual system.

Human

Arm

Forearm

Hand

Figure 2.13 An illustration of Marr’s 3D sketch, showing how the individual components are

constructed. The 3D sketch gives an observer-independent representation of object shape and

size. (Adapted from Marr 1982)
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Marr’s analysis of the visual system clearly illustrates both how a single cognitive

phenomenon can be studied at different levels of explanation, and how the different levels

of explanation can come together to provide a unified analysis. It is not surprising that

Marr’s analysis of the visual system has been taken as a paradigm of how cognitive science

ought to proceed.

Everyday experience, coarse

psychophysical demonstrations

Representational

problem

Nature of information to be 

made explicit

Specific representation

(can be programmed)

Specific neural

mechanism

Computational

problem

Computational theory pro-

cesses and constraints

Specific algorithm

(can be programmed)

Specific neural

mechanism

Detailed

psychophysics

Detailed neurophysiology

and neuroanatomy

Figure 2.14 The place of the implementational level within Marr’s overall theory. Note also the

role he identifies for detailed experiments in psychophysics (the branch of psychology studying how

perceptual systems react to different physical stimuli). (Adapted from Marr 1982)
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Summary

This chapter continued our historical overview of key steps in the emergence and evolution of

cognitive science. We have reviewed three case studies: Terry Winograd’s SHRDLU program for

modeling natural language understanding; the explorations into the representational format of

mental imagery inspired by the mental rotation experiments of Roger Shepard and others; and the

multilevel analysis of the early visual system proposed by David Marr. Each of these represented a

significant milestone in the emergence of cognitive science. In their very different ways they show

Low

High

1V1V

V3

MT/V5

FST

TE/LOC

LIPMST

Intermediate

V4/V8

Key:

V1–V8: areas of the visual cortex in the occipital lobe (the back of the head). V1 produces
the color and edges of the hippo but no depth. V2 produces the boundaries of the
hippo. V3 produces depth. V4/V8 produces color and texture.

MT: medial temporal area (often used interchangeably with V5). Responsible for
representing motion.

MST: medial superior temporal area. Responsible for representing size of the hippo as it
gets nearer in space.

LIP: lateral intraparietal area. Registers motion trajectories.
FST: fundus of the superior temporal sulcus. Discerns shape from motion.
TE: temporal area. Along with LOC, is responsible for shape recognition.
LOC: lateral occipital complex

Figure 2.15 An illustration of the hierarchical organization of the visual system, including which

parts of the brain are likely responsible for processing different types of visual information. (From

Prinz 2012)
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how researchers brought together some of the basic tools discussed in Chapter 1 and applied them

to try to understand specific cognitive capacities.

Checklist

Winograd’s SHRDLU

(1) SHRDLU is more sophisticated than a conversation-simulating chatbot because it uses language to

report on the environment and to plan action.

(2) SHRDLU illustrated how abstract grammatical rules might be represented in a cognitive system and

integrated with other types of information about the environment.

(3) The design of SHRDLU illustrates a common strategy in cognitive science, namely, analyzing a

complex system by breaking it down into distinct components, each performing a circumscribed

information-processing task.

(4) These information-processing tasks are implemented algorithmically (as illustrated by the

flowcharts that Winograd used to explain SHRDLU’s different procedures).

The Imagery Debate

(1) The experiments that gave rise to the imagery debate forced cognitive scientists to become much

more reflective about how they understand information and information processing.

(2) The imagery debate is not a debate about conscious experiences of mental imagery. It is about the

information processing underlying those conscious experiences.

(3) The mental rotation and scanning experiments were taken by many cognitive scientists to show

that some information processing involves operations on geometrically encoded representations.

(4) The debate is about whether the different effects revealed by experiments on mental imagery can

or cannot be explained in terms of digital information-processing models.

Marr’s Theory of Vision

(1) Marr identified three different levels for analyzing cognitive systems.

(2) His analysis of vision is a classic example of the top-down analysis of a cognitive system. The

analysis is driven by a general characterization at the computational level of the information-

processing task that the system is carrying out.

(3) This general analysis at the computational level is worked out in detail at the algorithmic level,

where Marr explains how the information-processing task can be algorithmically carried out.

(4) The bottom level of analysis explains how the algorithm is actually implemented. It is only at the

implementational level that neurobiological considerations come directly into the picture.

Further Reading

The general historical works mentioned at the end of the previous chapter also cover the material

in this chapter and will provide further useful context-setting.

A web-based version of ELIZA can be found in the online resources. The principal resource for

SHRDLU is Winograd’s book Understanding Natural Language (1972). This is very detailed,
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however, and a more accessible treatment can be found in his article “A procedural model of

language understanding” (1973), which is reprinted in Cummins and Cummins 2000. One of the

important descendants of the micro-world strategy exploited in SHRDLU was research into expert

systems. A helpful introduction is the entry on expert systems in the Macmillan Encyclopedia of

Cognitive Science (Medsker and Schulte 2003). The online Encyclopedia of Cognitive Science

(Nadel 2005) also has an entry on SHRDLU.

Many of the most important original articles in the imagery debate are collected in Block 1981.

The experiments described in the text were originally reported in Shepard and Metzler 1971,

Kosslyn 1973, and Cooper and Shepard 1973. Demonstrations and further discussion of mental

imagery can be found in the online resources. The imagery debate has received a good deal of

attention from philosophers. Rollins 1989 and Tye 1991 are book-length studies. The Stanford

Encyclopedia of Philosophy also has an entry on mental imagery at http://plato.stanford.edu/

entries/mental-imagery/mental-rotation.html. Kosslyn, Thompson, and Ganis 2006 is a recent

defense of geometric representation from one of the central figures in the debate. The best meta-

analyses of mental imagery studies can be found in Voyer, Voyer, and Bryden 1995 and Zacks

2008.

Marr’s book on vision (1982) has recently been reprinted (2010). Shimon Ullman’s foreword in

the new edition and Tomaso Poggio’s afterword provide some background to Marr. Ullman

discusses where the field has moved since Marr, while Poggio discusses Marr’s contribution to

computational neuroscience and how the field can benefit from looking back to Marr. The first

chapter of Marr’s book is reprinted in a number of places, including Bermúdez 2006 and Cummins

and Cummins 2000. Marr’s selected papers have also been published together (Vaina 1991).

Dawson 1998 is a textbook on cognitive science that is structured entirely around Marr’s tri-level

hypothesis. Also see Tsotsos 2011. Chapter 2 of Prinz 2012 gives a general assessment of the

accuracy of Marr’s account, in light of current research on visual processing. Elizabeth Warrington’s

classic studies can be found in Warrington and Taylor 1973, 1978.
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Overview

A striking feature of contemporary cognitive science, as compared with the 1970s for example, is

the increasing centrality of the brain. This chapter reviews some landmarks in cognitive science’s

turn to the brain. There are several different strands here. One is the emergence of different

techniques for studying the brain. These include brain studies and functional neuroimaging

techniques, And then, distinct from these but no doubt related, is the development of neurally

inspired computational models.

For both theoretical and practical reasons, neuroscience was fairly peripheral to cognitive

sciences until the 1980s. We begin in Section 3.1 by looking at some of the theoretical reasons,

particularly the influential idea that cognitive systems are functional systems, and so need to be

studied in terms of their function – what they do and how they do it. Many cognitive scientists hold
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that this type of functional analysis can be carried out without looking at details of neural

implementation.

One early move away from this functional view came with the two visual systems hypothesis,

originally proposed by the neuroscientists Leslie Ungerleider and Mortimer Mishkin. In Section 3.2

we look at how Ungerleider and Mishkin drew conclusions about the structure and organization of

vision from data about the pathways in the brain that carry visual information. The direction of

explanation is bottom-up, rather than top-down (as in Marr’s framework, which we looked at in

Section 2.3).

An important factor in the turn toward the brain was the development of ways of modeling

cognitive abilities designed to reflect very general properties of brains. As described in Section 3.3,

so-called connectionist networks, or artificial neural networks, involve large populations of neuron-

like units. The individual units are not biologically plausible in any detailed sense. But the network

as a whole behaves in ways that reflect certain high-level properties of brain functioning.

Until the 1980s, techniques for studying human brains while cognitive tasks were actually being

carried out were relatively unsophisticated and not widely known among cognitive scientists. This

changed with the emergence of functional neuroimaging in the 1980s, which provided a powerful

tool for studying what goes on in the brain when subjects are actually performing different types of

cognitive task.

In Section 3.4 we look at an early and very influential application of positron emission

tomography (PET) scanning technology to the study of visual word processing. This study shows

how functional neuroimaging can be used to generate information-processing models of how

cognitive tasks are carried out – information-processing models that are derived, not from abstract

task analysis, but rather from detailed study of neural activity.

Section 3.5 introduces functional magnetic resonance imaging (fMRI), which has superseded

PET in many domains, and allows a different type of experimental design (known as event-related

design). Event-related fMRI is introduced through studies of visual memory.

Finally, in Section 3.6, we turn to what fMRI actually measures, looking at groundbreaking

experiments by Nikos Logothetis. These experiments use single electrode recordings of

individual neurons to study the type of brain activity that is correlated with the BOLD (blood

oxygen level dependent) signal that is directly measured by fMRI (functional magnetic resonance

imaging).

3.1 Cognitive Systems as Functional Systems?

First, though, some background to make clear the significance of the turn to the brain.

Most of the models that we have looked at so far in our historical survey share certain very

basic features. In particular, models here assume that information is transformed and

transmitted in the brain in much the same way as information is transformed and trans-

mitted in digital computers. We can study computer algorithms without thinking about

the hardware and circuitry on which they run. And so, it is not surprising that these models

typically abstract away from the details of neural machinery in thinking about the algo-

rithms of cognition.
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In fact, for many cognitive scientists it is not just that cognitive processes can be studied

independently of the neural machinery on which they run. They have to be studied that

way. This is because they think of cognitive systems as functional systems. The important

point is, as the word suggests, that functional systems are to be understood primarily in

terms of their function – what they do and how they do it. And, these cognitive scientists

emphasize, this type of analysis can be given without going into details about the particu-

lar physical structure implementing that function.

An analogy will help. Consider a heart. What makes something a heart? The most

important thing is what it does. Hearts are organs that pump blood around the body – in

particular, they collect deoxygenated blood and pump it toward the lungs where it

becomes reoxygenated. The actual physical structure of the heart is not particularly

important. An artificial heart will do the job just as well (although not perhaps for as long)

and so still counts as a heart. Crocodiles and humans have hearts with four chambers,

while most reptiles have hearts with three chambers. What matters is the job the heart

does, not how it does it. A gray whale’s heart is no less a heart than a hummingbird’s heart

just because the first beats 9 times per minute while the second beats 1,200 times per

minute. One way of putting this is to say that functional systems aremultiply realizable. The

heart function can be realized by multiple different physical structures.

Exercise 3.1 Give another example of a multiply realizable system.

If cognitive systems are functional systems that are multiply realizable in the way that

the heart is multiply realizable, then, the argument goes, it is a mistake to concentrate on

the details of how the brain works. In fact, according to cognitive scientists opposed to

looking at the brain, focusing on how the brain works is likely to lead to a misleading

picture of how cognition works. It might lead us to take as essential to memory, say, things

that are really just contingent properties of how our brains have evolved. We would be

making the same mistake as if we were to conclude that hearts have to have four chambers

because the human heart does, or if we decided that Microsoft Word has to run on a 2.33

GHz Intel Core 2 Duo processor just because that is the processor in my Apple Macintosh.

But other cognitive scientists think that abstracting away from neural machinery in

studying the algorithms of cognition may not be a good idea. For one thing, cognitive

activity needs to be coordinated with behavior and adjusted online in response to percep-

tual input. The control of action and responsiveness to the environment requires cognitive

systems with a highly developed sense of timing. The right answer is no use if it comes at

the wrong time. But how can we think about the speed and efficiency of the mind without

taking into account the fact that it runs on the hardware of the brain?

Moreover, the mind is not a static phenomenon. Cognitive abilities and skills them-

selves evolve over time, developing out of more primitive abilities and giving rise to further

cognitive abilities. Eventually they deteriorate and, for many of us, gradually fade out of

existence. In some unfortunate cases they are drastically altered as a result of traumatic

damage. This means that an account of the mind must be compatible with plausible

accounts of how cognitive abilities emerge. It must be compatible with what we know
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about how cognitive abilities deteriorate. It must be compatible with what we know about

the relation between damage to the brain and cognitive impairment.

Cognitive abilities tend to degrade gracefully. As we get older reaction times increase,

motor responses slow down, and recall starts to become more problematic. But these

abilities do not (except as a result of trauma or disease) disappear suddenly. The deterior-

ation is gradual, incremental, and usually imperceptible within small time frames. This

type of graceful degradation is a function of how brains are wired, and of the biochemistry

of individual neurons.

The sameholds for how cognitive abilities emerge and develop. Brains learn theway they do

because of how they are constructed – and in particular because of the patterns of connectivity

existing at each level of neural organization (between neurons, populations of neurons, neural

systems, neural columns, and so forth). It is plausible to expect our higher-level theories of

cognitive abilities tobeconstrainedbyourunderstandingof theneuralmechanismsof learning.

Exercise 3.2 Can you think of other reasons for thinking that we should not theorize about

cognition without theorizing about the brain?

3.2 The Anatomy of the Brain and the Primary Visual Pathway

We turn now to the two visual systems hypothesis, as our first illustration of the turn to the

brain. First, though, we need a little information about the large-scale anatomy of the brain.

Anatomists distinguish three different parts of the mammalian brain – the forebrain, the

midbrain, and the hindbrain. This structure is illustrated for the human brain in Figure 3.1.

As the figure shows, the forebrain is the largest of the three regions. Most of the forebrain

is taken up by the cerebrum (see Figure 3.2), which is the main portion of the brain and the

most important for cognitive and motor processing. The cerebrum is divided into two

hemispheres – left and right. The hemispheres are separated by a deep groove, known as

the longitudinal fissure or the interhemispheric fissure.

The two hemispheres have similar organizations. Eachhas an outer layer, which comprises

what is knownas the cerebral cortex.Onlymammalshave a cerebral cortex, and in the human

brain it is about 2–4 mm thick. Moving inward from the outer, cortical layer we find the

remaining major structures of the forebrain. These are the thalamus, the hypothalamus, and

the limbic system, collectively known as subcortical areas (because they lie below the cortex).

The tissue of these inner, subcortical parts of the forebrain is known as white matter,

because it is made up of neurons whose axons are encased in a white sheath of myelin

(which speeds up the transmission of nerve signals). Neurons in the cerebral cortex are

typically unmyelinated and look gray – hence the term “gray matter.”

Within each hemisphere, the cerebral cortex is divided into four main regions, called

lobes. Each lobe is believed to be responsible for carrying out different cognitive tasks.

Figure 3.3 illustrates the organization of the left hemisphere into four lobes, while Box 3.1

summarizes what each lobe is believed to be specialized for.
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Figure 3.1 The large-scale anatomy of the brain, showing the forebrain, the midbrain, and the

hindbrain.

BOX 3.1 What Does Each Lobe Do?

■ Frontal lobe – reasoning, planning, parts of speech, movement, emotions, and problem solving

■ Parietal lobe – movement, orientation, recognition, perception of stimuli

■ Occipital lobe – associated with visual processing

■ Temporal lobe – associated with perception and recognition of auditory stimuli, memory, and

speech
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There is further organization within each lobe. In 1909 the German neurologist Korbinian

Brodmann proposed a mapping of the cerebral cortex into fifty-two areas. These Brodmann

areas are still in use today. An example particularly relevant to us now is Brodmann area 17,

which is also known as the primary visual cortex, the striate cortex, or area V1. Brodmann area

17 is located in the occipital lobe and (as the name “primary visual cortex” suggests) it is the

point of arrival in the cortex for information from the retina.

The information pathway leading from the retina to the primary visual cortex is relatively

well understood. It is illustrated in Figure 3.4, which shows how visual information from

each eye is transmitted by the optic nerve to the lateral geniculate nucleus (a subcortical area

of the forebrain) and thence to the primary visual cortex. The diagram clearly shows the

contralateral organization of the brain. Each hemisphere processes information deriving

from the opposite side of space. So, visual information from the right half of the visual field

is processed by the left hemisphere (irrespective of which eye it comes from).

Much more complicated than the question of how information from the retina gets to

the primary visual cortex is the question of what happens to that information when it

leaves the primary visual cortex. This is where we come to the two visual systems hypoth-

esis and to the work of Ungerleider and Mishkin.

The Two Visual Systems Hypothesis: Ungerleider and
Mishkin, “Two Cortical Visual Systems” (1982)

This section introduces the two visual systems hypothesis, first proposed by the neurolo-

gists Leslie Ungerleider and Mortimer Mishkin. The two visual systems hypothesis is

Cerebrum

Corpus
callosum

Pons

Medulla

Cerebellum

Figure 3.2 A vertical slice of the human brain, showing the cerebrum. © TISSUEPIX/SCIENCE

PHOTO LIBRARY
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important both because of the tools that were used to arrive at it (including the study of

brain-damaged patients and experiments on monkeys) and because it illustrates a bottom-

up, as opposed to top-down, way of studying the mind.

Ungerleider and Mishkin suggested that visual information does not take a single route

from the primary visual cortex. Instead, the route the information takes depends upon the

type of information it is. Information relevant to recognizing and identifying objects

Central sulcus

Frontal Parietal

Temporal

Lateral sulcus

Occipital

Thalamus

Basal ganglia

Left hemisphere

Corpus callosum

Right hemisphere

Sagittal sulcus

Figure 3.3 The division of the left cerebral hemisphere into lobes.

The Anatomy of the Brain and the Primary Visual Pathway 71



follows a ventral route (see Box 3.2) from the primary visual cortex to the temporal lobe,

while information relevant to locating objects in space follows a dorsal route from the

primary visual cortex to the posterior parietal lobe. The two routes are illustrated in

Figure 3.5.

Primary visual
cortex

Projections to visual cortex

Right optic tract

Right lateral geniculate
nucleus of the thalamus

Optic chiasm

Right optic nerve

Visual field
of right eye

Visual field
of left eye

Thalamus

Lateral geniculate
nucleusSuperior

colliculus

Primary
visual
cortex

Optic nerve
Optic chiasm

Optic tract 

Figure 3.4 The primary visual pathway. Note the contralateral organization, with information

from the right side of space processed by the left side of the brain.

BOX 3.2 Brain Vocabulary

Neuroscientists and neuroanatomists use an unfamiliar vocabulary for talking about the layout of

the brain:

Rostral = at the front

Caudal = at the back

Ventral = at the bottom

Dorsal = at the top

Ipsilateral = same side

Contralateral = opposite side
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Ungerleider and Mishkin came to this conclusion after studying cognitive impairments

due to brain damage and performing neuroanatomical experiments on monkeys. The

neuroanatomical experiments were their distinctive contribution. By the time they were

writing, there was already considerable evidence from brain-damaged patients that damage

to the temporal and parietal lobes produced very different types of cognitive problem.

Damage to the temporal cortex is associated with problems in identifying and recognizing

objects, while damage to the parietal cortex tends to result in problems locating objects.

Evidence of this type has always been very important in working out the function of the

different lobes (see Box 3.1 for a standard “division of labor” between the lobes). But being

able to localize specific functions in this way falls a long way short of telling us the full story

about the path that information takes in the brain. For that Ungerleider and Mishkin

turned to experiments on monkeys.

The particular type of experiments that they carried out are called cross-lesion disconnec-

tion experiments. This is a methodology explicitly designed to trace the connections

between cortical areas and so to uncover the pathways along which information flows. It

addresses a fundamental problem with making inferences about the function and special-

ization of particular brain areas from what happens when those areas are damaged. Simply

finding specific cognitive problems associated with damage to a specific brain region gives

us no way of telling whether the impaired cognitive abilities are normally carried out by the

damaged brain region itself, or by some other brain region that crucially depends upon

input from the damaged brain region. Solving this problem cannot be done simply by

observing the results of brain damage. Precise surgical intervention is required, in the form

of targeted removal of specific brain areas to uncover the connections between them.

The cross-lesion disconnection experiments exploit the fact that the cerebrum is divided

into two hemispheres, with duplication of the principal cortical areas. Suppose that investi-

gators think that they have identified a cortical pathway that connects two cortical areas.
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Figure 3.5 Image showing ventral (purple) and dorsal (green) pathways in the human visual

system.
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They can remove the area assumed to be earlier in the pathway from one hemisphere and

the area assumed to be later from the other hemisphere.

Ungerleider and Mishkin, for example, hypothesized that there is a pathway connecting

the primary visual cortex and the inferior temporal area, and so they performed surgery in

monkeys to remove the primary visual cortex from one hemisphere in monkeys and the

inferior temporal area from the other hemisphere. This destroyed the postulated pathway

in each hemisphere. However, because the hemispheres can communicate through a large

bundle of fibers known as the corpus callosum (illustrated in Figure 3.2), it turned out that

there was little or no loss of function in the monkeys.

So, for example, it is well documented that monkeys who have had their inferior

temporal cortex removed from both hemispheres are severely impaired on basic pattern

discrimination tasks. But these pattern discrimination tasks were successfully performed by

monkeys with primary visual cortex removed from one hemisphere and inferior temporal

cortex from the other. Cutting the corpus callosum, however, reduced performance on

those pattern discrimination tasks to chance and the monkeys were unable to relearn it.

Using experiments such as these (in addition to other types of neurophysiological

evidence), Ungerleider and Mishkin conjectured that information relevant to object iden-

tification and recognition flows from the primary visual cortex to the inferior temporal

cortex via areas in the occipital lobe collectively known as the prestriate cortex. They called

this the ventral pathway.

Ungerleider and Mishkin identified a completely different pathway (the dorsal pathway)

leading from the primary visual cortex to the posterior parietal lobe. Once again they used

cross-lesion disconnection experiments. In this case the task was the so-called landmark

task, illustrated in the top left part of Figure 3.6.

In the landmark task monkeys are trained to choose food from one of two covered

foodwells, depending on its proximity to a striped cylinder. The striped cylinder is moved

at random and the task tests the monkey’s ability to represent the spatial relation between

the striped cylinder and the two foodwells.

The basic methodology was the same as for the experiments on the visual recognition

pathway. The surgery proceeded in three stages. In thefirst stage (b in Figure 3.6) the posterior

parietal cortex was removed from one side. The second stage (c) removed the primary visual

cortexon theopposite side. The final stage (d)was a transection (severing)of the corpus callosum.

As indicated in Figure 3.6, the monkeys were tested on the landmark task both before and

after each stage.However, the impairmentson the landmark taskweremuchmore complicated

than in the earlier experiments. The numbers in Figure 3.6 indicate the number of trials

required to train themonkeys to a90percent success rate on the landmark task. So, for example,

prior to thefirst stage of the surgery the average number of training trials requiredwas ten. After

lesion of the posterior parietal cortex the number of training trials went up to 130.

One interesting feature of these experiments is that the most severe impairment was

caused by the second stage in the surgery, the removal of the primary visual cortex (in

contrast to the other experiments on the visual recognition pathway, where severe impair-

ments appeared only with the cutting of the corpus callosum). Ungerleider and Mishkin

concluded from this that the posterior parietal cortex in a given hemisphere does not
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Figure 3.6 Design and results of Ungerleider and Mishkin’s cross-lesion disconnection studies.

(a) Landmark task. Monkeys were rewarded for choosing the covered foodwell located closer to a

striped cylinder (the “landmark”), which was positioned on the left or the right randomly from trial

to trial, but always 5 cm from one foodwell and 20 cm from the other. Training was given for thirty

trials per day to a criterion of ninety correct responses in 100 consecutive trials. (b) Discrimination

retention before and after first-stage lesion (unilateral posterior parietal; V = 3); 10 preoperative

trials and 130 postoperative trials. (c) Discrimination retention before and after second-stage

lesion (contralateral striate; y = 3); 70 preoperative and 880 postoperative trials. (d) Discrimination

retention before and after third-stage lesion (corpus callosum; N = 3); 30 preoperative and

400 postoperative trials. At each stage, the lesion is shown in dark brown and the lesions of prior

stages in light brown. Arrows denote hypothetical connections left intact by lesions. (Adapted from

Ungerleider and Mishkin 1982)
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depend much upon information about the ipsilateral visual field (see Box 3.2) from the

opposite hemisphere’s primary visual cortex.

This raises the following intriguing possibility, since it is known that each hemisphere is

specialized for the contralateral region of space. It may be that the posterior parietal cortex

in each hemisphere is specialized for processing information about the opposite region of

space. This would mean, for example, that the left posterior parietal cortex processes

information about the layout of space on the perceiver’s right-hand side.

This could be particularly important for thinking about the neurological disorder ofunilat-

eral spatial neglect. Patients with this disorder typically “neglect” one-half of the space around

them, eating food from only one side of the plate and describing themselves as unaware of

stimuli in the neglectedhalf of space.Unilateral spatial neglect typically followsdamage to the

posterior parietal cortex in one hemisphere (most often the right) and the neglected region is

contralateral to the damage (so that, most often, the left-hand side of space is neglected).

The visual systems hypothesis was a very important step inmapping out the connectivityof

the brain. Ungerleider andMishkin’s basic distinction between the “what” system (served by

the ventral pathway) and the “where” system (served by the dorsal pathway) has been refined

and modified by many researchers (see the references in the Further Reading section of this

chapter). However, the idea that there is no single pathway specialized for processing visual

information, but instead that visual information takes different processing routes depending

upon what type of information it is, has proved very enduring. From the perspective of

cognitive science, the significance of the two visual systems hypothesis is that it exemplifies

in a particularly clear way the bottom-up study of how information is processed in the mind.

There are recognizable affinities between what Ungerleider and Mishkin were doing, on

the one hand, and the top-down approach of cognitive scientists such as Marr, on the

other. So, for example, both are concerned with identifying distinct processing systems in

terms of the functions that they perform. The real difference comes, however, with how

they arrive at their functional analyses.

For Marr, the primary driver is top-down thinking about the role of visual processing

within the overall organization of cognition and the behavior of the organism. For Unger-

leider and Mishkin, the primary driver is thinking that starts at what Marr would term the

implementational level. Instead of abstracting away from details of the channels and

pathways between neural systems along which information processing flows, Ungerleider

and Mishkin started with those channels and pathways and worked upward to identifying

distinct cognitive systems carrying out distinct cognitive functions.

Exercise 3.2 Make as detailed a list as you can of similarities and differences between the top-

down and bottom-up approaches to studying the organization of the mind.

3.3 Extending Computational Modeling to the Brain

The historical antecedents of neutrally inspired computational models go back to the

1940s, and in particular to the work of Warren McCullogh and Walter Pitts (discussed in

more detail in Chapter 5). But an important modern landmark was the publication in
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1986 of a very influential two-volume collection of papers by Rumelhart, McClelland, and

the PDP Research Group.

A New Set of Algorithms: Rumelhart, McClelland, and
the PDP Research Group, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition (1986)

The papers in the collection proposed and pursued a new set of abstract mathematical tools

for modeling cognitive processes. These models are sometimes called connectionistnetworks

and sometimes artificial neural networks (terms that we will use interchangeably). They

abstract away from many biological details of neural functioning. But they manage to

capture some of the key features of how the brain works. We will be looking in much more

detail at artificial neural networks in later chapters (particularly Chapter 5). Here we will

simply give a brief sketch of some key features.

First, connectionist networks display parallel processing. An artificial neural network

contains a large number of units (artificial neurons). Each unit has a varying level of

activation, typically represented by a real number between –1 and 1. The units are organ-

ized into layers with the activation value of a given layer determined by the activation

values of all the individual units. The simultaneous activation of these units, and the

consequent spread of activation through the layers of the network, governs how infor-

mation is processed within the network. The processing is parallel because the flow of

information through the network is determined by what happens in all of the units in a

given layer – but none of those units are connected to each other.

Second, each unit in a given layer has connections running to it from units in the

previous layer (unless it is a unit in the input layer) and will have connections running

forward to units in the next layer (unless it is a unit in the output layer). The pattern of

connections running to and from a given unit is what identifies that unit within the

network. The strength of the connections (the weight of the connection) between individ-

ual neurons varies. In fact, neural networks learn by modifying their weights.

Third, there are no intrinsic differences between one unit and another. The differences

lie in the connections holding between that unit and other units.

Finally, most artificial neural networks are trained, rather than programmed. They are

generally constructed with broad, general-purpose learning algorithms that work by

changing the connection weights between units in a way that eventually yields the desired

outputs for the appropriate inputs. These algorithms work by changing the weights of the

connections between pairs of neurons in adjacent layers in order to reduce the “mistakes”

that the network makes.

Figure 3.7 illustrates a generic neural network with three layers of units. The first layer is

made up of input units, which receive inputs from sources outside the network. The third

layer is made up of output units, which send signals outside the network. The middle layer

is composed of what are called hidden units.

Hidden units only communicate with units within the network. They are the key to the

computational power of artificial neural networks. Networks without hidden units can
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only perform very limited computations. The illustrated network only has one layer of

hidden units, but in fact networks can be constructed with as many layers as required.

(More details coming up in Chapter 5.)

It takes a long time to train a network. Typically the network starts with randomly

assigned weights. It is then given a training series of input patterns of activation, each of

which is associated with a target output pattern of activation. The input patterns are

presented. Differences between the actual output pattern and the target output pattern

result in changes to the weights. (This is what the learning algorithm does – adjust the

weights in order to reduce the difference between actual and desired output.)

This training process continues until errors have diminished almost to zero, resulting in

a distinctive and stable pattern of weights across the network. The overall success of a

network can be calculated by its ability to produce the correct response to inputs on which

it has not been trained. The next subsection illustrates the sort of task that a network can be

trained to do with a justly celebrated example.

Pattern Recognition in Neural Networks: Gorman and
Sejnowski, “Analysis of Hidden Units in a Layered Network
Trained to Identify Sonar Targets” (1998)

Artificial neural networks are particularly suited for pattern recognition tasks. Here is a

classic example. Consider the task of identifying whether a particular underwater sonar

echo comes from a submerged mine, or from a rock. There are discriminable differences

between the sonar echoes of mines and rocks, but there are equally discriminable differ-

ences between the sonar echoes from different parts of a single mine, or from different

Input Output

j

i

Figure 3.7 A generic three-layer connectionist network (also known as an artificial neural

network). The network has one layer of hidden units. (Adapted from McLeod, Plunkett, and Rolls

1998)
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parts of a single rock. It is no easy matter to identify reliably whether a sonar echo comes

from a mine or from a rock. Human sonar operators can do so reasonably well (after a

considerable amount of practice and training), but it turns out that artificial neural net-

works can perform significantly better than humans.

The first problem is coding the external stimulus as a pattern of activation values. The

external stimuli are sonar echoes from similarly shaped and sized objects known to be

either mines or rocks. In order to “transform” these sonar echoes into a representational

format suitable for processing by the network, the sonar echoes are run through a spectral

analyzer that registers their energy levels at a range of different frequencies. This process

gives each sonar echo a unique “fingerprint” to serve as input to the network. Each input

unit is dedicated to a different frequency and its activation level for a given sonar echo is a

function of the level of energy in the relevant sonar echo at that frequency. This allows the

vector of activation values defined over the input units to reflect the unique fingerprint of

each sonar echo.

The neural network developed by Paul Gorman and Terrence Sejnowski to solve this

problem contains sixty input units, corresponding to the sixty different frequencies at

which energy sampling was carried out, and one layer of hidden units. Since the job of the

unit is to classify inputs into two groups, the network contains two output units – in effect,

a rock unit and a mine unit. The aim of the network is to deliver an output activation

vector of <1,0> in response to the energy profile of a rock and <0,1> in response to the

energy profile of a mine. Figure 3.8 is a diagrammatic representation of Gorman and

Sejnowski’s mine/rock network.

The mine detector network is a standard feedforward network (which means that

activation is only ever spread forward through the network) and is trained with the back-

propagation learning algorithm (explained in Chapter 5). Although the network receives

information during the training phase about the accuracy of its outputs, the only memory

it has of what happened in early sessions is the particular patterns of weights holding

across the network. Each time the network comes up with a wrong output (a pattern of

<0.83, 0.17> rather than <1.0>, for example, in response to a rock profile), the error is

propagated backward through the network and the weights adjusted to reduce the error.

Eventually the error at the output units diminishes to a point where the network can

generalize to new activation patterns with a 90 percent level of accuracy.

The mine/rock detection task is a paradigm of the sort of task for which neural networks

are best known and most frequently designed. The essence of a neural network is pattern

recognition. But many different types of cognitive ability count as forms of pattern recog-

nition and the tools provided by artificial neural networks have been used to model a range

of cognitive processes – as well as many phenomena that are not cognitive at all (such as

predicting patterns in the movements of prices on the stock markets, valuing bonds, and

forecasting demand for commodities).

Exercise 3.4 Give examples of cognitive abilities that you think would lend themselves to being

modeled by artificial neural networks.
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3.4 Mapping the Stages of Lexical Processing

In this section we turn back from thinking about computational modeling in the abstract

to thinking about how the direct study of the brain can help cognitive scientists to

formulate and decide between different models. Earlier in this chapter we looked at how

neurological experiments on monkeys have been used to identify the channels and path-

ways along which visual information flows. We turn now to a different set of techniques

that have become an increasingly important part of the cognitive scientist’s tool kit.

1.0
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Figure 3.8 Gorman and Sejnowski’s mine/rock detector network. (Adapted from Gorman and

Sejnowski 1988)
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Functional Neuroimaging with PET: Petersen, Fox,
Posner, and Mintun, “Positron Emission Tomographic Studies
of the Cortical Anatomy of Single-Word Processing” (1988)

Functional neuroimaging allows brain activity to be studied noninvasively. No surgery is

required and subjects can be studied while they are actually performing experimental tasks.

There are different types of functional neuroimaging. The first experiments we will look

at use the technique known as positron emission tomography (better known under its

acronym PET). We will be looking at fMRI (functional magnetic resonance imaging) in the

next section.

The basic idea behind the PET technology (as with functional neuroimaging in general)

is to study the function of different brain areas by measuring blood flow in the brain. We

can work out which brain areas are involved in carrying out particular cognitive tasks by

identifying the areas to which blood is flowing. The distinctiveness of PET is that it

provides a safe and precise way of measuring short-term blood flow in the brain. Subjects

are given (typically by injection) a small quantity of water containing the positron-

emitting radioactive isotope oxygen-15 (

brain in direct proportion to the local blood flow, so that areas to which the most blood is

flowing will show the greatest concentration of

indirect, but highly reliable, measure of blood flow in the brain, and hence a way of telling

which brain regions are active during the minute after administering the water. If subjects

are carrying out particular experimental tasks during that time, then the PET technology

gives scientists a tool for identifying which brain regions are actively involved in carrying

out that task.

However, simply identifying which brain regions have blood flowing to them while a

particular task is being performed is not enough to tell us which brain regions are actively

involved in carrying out the task. There may be all sorts of activity going on in the brain

that are not specific to the particular experiment that the subject is performing. The art in

designing PET experiments is finding ways to filter out potentially irrelevant, background

activity. The experiments we will be focusing on, carried out by Steve Petersen and collab-

orators at Washington University in St. Louis, provide a very nice illustration of how this

sort of filtering can be done – and of how careful experimental work can refine

information-processing models.

Petersen, Fox, Posner, and Mintun, “Positron
Emission Tomographic Studies of the Cortical Anatomy of
Single-Word Processing” (1988)

Petersen and his colleagues were studying how linguistic information is processed in the

human brain. They started with individual words – the basic building blocks of language.
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Many different types of information are relevant to the normal course of reading, writing,

or conversing. There is visual information about the shape and layout of the word, as well

as auditory information about how the word sounds and semantic information about what

the word means. The interesting question is how these different types of information are

connected together. Does silently reading a word to oneself involve processing information

about how the word sounds? Does simply repeating a word involve recruiting information

about what the word means?

The two leading information-processing models of single-word processing (often

called lexical access) answer these two questions very differently. Within neurology the

dominant model, derived primarily from observing brain-damaged patients, holds that

the processing of individual words in normal subjects follows a single, largely invariant

path. The information-processing channel begins in the sensory areas. Auditory infor-

mation about how the word sounds is processed in a separate brain region from infor-

mation about the word’s visual appearance. According to the neurological model,

however, visual information about the word’s appearance needs to be phonologically

recoded before it can undergo further processing. So, in order to access semantic infor-

mation about what a written word means, the neurological model holds that the brain

needs to work out what the word sounds like. Moreover, on this model, semantic

processing is an essential preliminary to producing phonological motor output. So, for

example, reading a word and then pronouncing it aloud involves recruiting information

about what the word means.

Exercise 3.5 Draw a flowchart illustrating the distinct information-processing stages in single-

word processing according to the neurological model.

The principal alternative to the neurological model is the cognitive model (derived

primarily from experiments on normal subjects, rather than from studies of brain-damaged

patients). The neurological model is serial. It holds that information travels through a fixed

series of information-processing “stations” in a fixed order. In contrast, the cognitive

model holds that lexical information processing is parallel. The brain can carry out different

types of lexical information processing at once, with several channels that can feed into

semantic processing. Likewise, there is no single route into phonological output

processing.

Petersen and colleagues designed a complex experiment to determine which model

reflects more accurately the channels of lexical information processing in the brain. The

basic idea was to organize the experimental conditions hierarchically, so that each condi-

tion could tap into a more advanced level of information processing than its predecessor.

Each level involved a new type of information-processing task. Successfully carrying out

the new task required successfully carrying out the other tasks lower in the hierarchy. What

this means is that by looking at which new brain areas are activated in each task we can

identify the brain areas that are specifically involved in performing that task – and we can

also see which brain areas are not involved.
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The baseline condition was simply asking subjects to focus on a fixation point (a small

cross-hair) in the middle of a television screen. The point of asking the subjects to do this

was to identify what is going on in the brain when subjects are visually attending to

something that is not a word. The second condition measured brain activity while subjects

were passively presented with words flashed on the screen at a rate of forty words per

minute. The subjects were not asked to make any response to the words. In a separate

condition the same words were spoken to the subjects.

Combining the results from these two different conditions allowed Petersen and his

colleagues to work out which brain areas are involved in visual and auditory word percep-

tion. The key to doing this is to subtract the image gained from the first condition from the

image derived from the second condition. The image of brain activity while fixating on the

cross-hair acts as a control state. In principle (and we will look much more closely at some

of the methodological difficulties in functional neuroimaging in Chapter 9), this allows us

to filter out all the brain activation that is responsible for sensory processing in general,

rather than word perception in particular.

The third and fourth levels of the experimental hierarchy measured brain activation

during more complex tasks. The aim here was to trace the connections between initial

sensory processing and the semantic and output processing that takes place further “down-

stream.” In the third condition subjects were asked to say out loud the word appearing on

the screen. Subtracting the resulting image from the word perception image allowed

Petersen and his colleagues to calculate which brain areas are involved in speech produc-

tion. Finally, the highest level of the experimental hierarchy involved a task that clearly

requires semantic processing. Here the subjects were presented with nouns on the televi-

sion monitor and asked to utter an associated verb. So, for example, a subject might say

“turn”when presented with the word “handlebars.” As before, Petersen and his colleagues

argued that subtracting the image of brain activation during this semantic association task

from the image obtained from the speech production task would identify the brain areas

involved in semantic processing.

Exercise 3.6 Make a table to show the different levels in the hierarchy and the aspects of single-

word processing that they are intended to track.

Statistical comparison of the brain images in the different stages of the experiment

produced a number of striking results. As we see in Figure 3.9, each of the tasks activated

very different sets of brain areas. (The areas with the maximum blood flow are colored

white, followed in decreasing order by shades of red, yellow, green, blue, and purple.)

Moreover, the patterns of activation seemed to provide clear evidence against the

neurological model. In particular, when subjects were asked to repeat visually presented

words, there was no activation of the regions associated with auditory processing. This

suggested to Petersen and his colleagues that there is a direct information pathway

from the areas in the visual cortex associated with visual word processing to the

distributed network of areas responsible for articulatory coding and motor
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programming, coupled with a parallel and equally direct pathway from the areas associ-

ated with auditory word processing. Moreover, the areas associated with semantic

processing (those identified in the condition at the top of the hierarchy) were not

involved in any of the other tasks, suggesting that those direct pathways did not

proceed via the semantic areas.

The situation can most easily be appreciated in an information-processing diagram.

Figure 3.10 is drawn from a paper by Petersen and collaborators published in the journal

Nature in 1988. Unlike many information-processing flowcharts, this one is distinctive in

that it identifies the particular brain areas that are thought to carry out each distinct stage.

This is not an accident. It reflects how the information-processing model was reached – on

the basis of direct study of the brain through PET scan technology.

3.5 Studying Memory for Visual Events

There are two principal technologies in functional neuroimaging. In Section 3.4 we looked

at the PET technology, which measures cerebral blood flow by tracking the movement of

radioactive water in the brain. A newer, and by now dominant, technology is functional

magnetic resonance imaging (fMRI).

Figure 3.9 Images showing the different areas of activation (as measured by blood flow) during

the four different stages in Petersen et al.’s (1988) lexical access studies. (From Posner and Raichle

1994)

84 The Turn to the Brain



OUTPUT TASK

Motor output
Motor (rolandic) cortex

Articulatory coding. Motor programming

SMA. Inferior premotor sylvian areas.

L. Premotor

ASSOCIATION TASK

Generate uses
Covert monitoring

Semantic association
Area 47

SENSORY TASK

Passive words
Auditory presentation

Auditory (phonological) 

word form

Temporoparietal cortex

Early auditory processing
Primary auditory cortex

Passive words
Visual presentation

Visual word form

Extrastriate cortex

Early visual processing
Striate visual cortex

SENSORY TASK

Figure 3.10 A flowchart relating areas of activation in Petersen et al.’s 1988 study to different

levels of lexical processing. The dashed boxes outline the different subtraction. The solid boxes

outline possible levels of coding and associated anatomical areas of activation. (From Petersen

et al. 1988)
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Functional Neuroimaging with fMRI

The standard background assumption in fMRI (as with PET) is that blood flow to a

particular region of the brain increases when cellular activity in that region increases. This

increase in blood flow produces an increase in oxygen. Since the supply of oxygen is greater

than the demand, the blood oxygen level increases in a brain region that is undergoing

increased cellular activity. An fMRI scanner creates a powerful magnetic field, which can

detect increases in blood oxygen, since oxygenated and deoxygenated blood have different

properties.

The difference between oxygenated and deoxygenated blood is known as the BOLD

(blood oxygen level dependent) contrast. Functional magnetic resonance imaging meas-

ures the BOLD signal. (As we will see in the next section, there are different ways of

thinking about what the BOLD signal tells us about the brain.)

Early fMRI experiments used a similar experimental design to those used in PET studies,

such as the Peterson et al. experiments described in Section 3.4. This is known as a blocked

design. In a blocked design, experiment subjects perform a task for an extended period of

time. The task might be focusing on a fixation point, or repeated visually presented words.

Using extended blocks maximizes the changes in blood oxygen level and so gives a

stronger signal. This in turn makes it easier to compare and contrast signals in different

conditions using subtraction methods.

One reason for the popularity of blocked designs in early fMRI experiments is that the

BOLD hemodynamic response is delayed in its onset and takes a while to develop. So, for

example, for a neural event lasting one second, it takes two seconds for the hemodynamic

response to start to develop, and the development takes 10-12 seconds. So, early research-

ers concluded that these aspects of the BOLD signal required fMRI experiments to use the

same kind of experimental design as PET experiments.

In the early 1990s, however, a new type of experimental design emerged for fMRI

experiments. This is usually termed event-related fMRI. It is in some respect similar to the

experimental design used in many EEG (electroencephalography) experiments, which we

will look at in more detail in Chapter 9. The basic idea of event-related fMRI is to measure

the BOLD signal associated with individual rapid occurring neural events, even though

these events elicit overlapping hemodynamic responses. Event-related fMRI is possible

because the hemodynamic response measured through fMRI behaves (to a first approxima-

tion) like a linear system.

What this means is that the hemodynamic response for a given event in a series

basically adds on proportionally to the hemodynamic response for earlier events in the

series. So, if you can measure the change in the BOLD signal associated with six task-

events, each two seconds in length, the result will be close to the BOLD signal associated

with a single task-event, lasting for 12 seconds. Because of this linearity, even though the

hemodynamic responses for those six events are all overlapping, standard statistical

techniques can be used to work backward from the overall change in the BOLD signal

for the series to the particular change in the BOLD signal for each event. And it is also

86 The Turn to the Brain



possible, although more complicated, to do this when the events in the series are different

from each other.

Using event-related fMRI, neuroscientists are able to study the BOLD signal produced by

short duration events, and also to disentangle the separate components of complex tasks.

This is a very significant step beyond the blocked-design paradigm (although that remains

useful for various areas of neuroimaging, such as the neuroimaging for language). To

illustrate the power of event-related fMRI, we will look at an important early study on

memory for visual events.

Brewer, Zhao, Desmond, Glover, and Gabrieli,
“Making Memories: Brain Activity That Predicts How Well
Visual Experience Will Be Remembered” (1998)

This important paper was one of the first fMRI studies to use an event-related experimental

design. It was trying to get at something that could not be uncovered using a blocked

design, because it depended on information about changes in the BOLD signal brought

about by very specific and short-lived neural events. Brewer and his colleagues were

interested in exploring whether there are any neural markers predicting how well specific

visual experiences would be remembered. Are there any areas in the brain where activity in

those areas would predict whether they would be remembered well, less well, or forgotten?

It is important to realize what this question is not asking. It is not asking which areas in

the brain are involved in memory. That was already fairly well known from studies of

brain-damaged patients. So, for example, there is considerable evidence that damage to the

medial temporal lobe causes global amnesia, and that damage to specific parts of the frontal

lobes can bring about different types of local amnesia. Damage to the left front lobes affect

verbal memory, for example.

But looking at brain damage cannot distinguish between the different aspects of

memory. It cannot tell us whether what is impaired is how experiences are encoded for

memory; how memories are stored; or how they are retrieved. And it certainly cannot tell

us anything about individual experiences, and how likely they are to be remembered. For

that you need to be able to identify the specific hemodynamic response generated by

specific experiences – in other words, you need an event-related design.

Exercise 3.7 Explain in your own words the difference between a blocked design and an event-

related design.

To get at this question about how individual experiences are encoded in memory, the

experimenters showed subjects in an fMRI scanner ninety-six color pictures of indoor and

outdoor scenes over four trials. The pictures were selected to be broadly comparable in

complexity and visual quality, so that they would all make roughly the same general

processing demands. All that the subjects were asked to do while in the scanner was to

identify for each picture whether it was an indoor or outdoor scene. Then, 30 minutes later,
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the subjects were given an unanticipated memory test, presented with 128 pictures,

including the 96 shown to them in the scanner, and asked to identify which they had

seen before, and to identify how confident they were.

The memory test allowed the experimenters to classify how well each subject remem-

bered each of the originally displayed pictures – as well remembered, as familiar, or as

forgotten. The next step was to try to find patterns of neural activity correlated with each of

those three levels of memory performance. To that end, the experimenters constructed two

maps of event-related activity. The first map showed brain areas where the hemodynamic

response increased when subjects were looking at pictures (relative to activation levels

during fixation). So, this map measured the BOLD response generated by visual experi-

ences. The first map is illustrated in Figure 3.11.

As Figure 3.11 shows, many areas are involved in visual experience. But which ones are

responsible for encoding visual experiences into memory?

Figure 3.11 Neural area showing activity when subjects looked at pictures.
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The secondmap answered this question. It showed brain areas where activation levelswere

correlated with the levels of memory performance for individual events. So, for example, a

brain area would appear on the second map if it showed high levels of increased activation

during visual experiences of pictures that were subsequentlywell remembered,medium levels

of increased activation during visual experiences that were subsequently judged familiar, and

low levels of increased activation during visual experiences that were not remembered.

The second map is depicted in Figure 3.12.

Comparing Figures 3.11 and 3.12 shows that encoding visual experiences into memory

is highly localized. Of the many areas implicated in visual experience, only two predict

how well those visual experiences will be remembered. The first area is the parahippocam-

pal cortex (in both hemispheres). The parahippocampal cortex is part of the medial

temporal lobe. The second area is the dorsolateral prefrontal cortex, only in the right

hemisphere.

Quite apart from the intrinsic interest of these results for the study of memory, they are

an excellent illustration of the power of event-related designs for fMRI. The event-related

design makes it possible to identify the hemodynamic response generated by each individ-

ual visual experience, and without that it would be impossible to identify the areas that

predict which experiences will be remembered – as opposed to identifying the areas

generally responsible for visual experience and/or memory.

Figure 3.12 Neural areas where activation is correlated with levels of memory performance.
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3.6 The Neural Correlates of the BOLD Signal

When one is looking at brightly colored pictures communicating the results of PET or fMRI

scans it is only too easy to forget that relatively little is known about the relation between

what those scans measure and the cognitive activity that is going on while the measure-

ments are being made. It is only in the very recent past that progress has been made on

building a bridge between functional neuroimaging and neurophysiology.

As we saw in Section 3.5, fMRI measures the BOLD contrast. But what does the BOLD

contrastmeasure? In some sense the BOLD contrast has to be an index of cognitive activity–

since it is known that cognitive activity involves increased activity in populations of

neurons, which in turn results in increased oxygen levels and hence in a more pronounced

BOLD contrast. But what sort of neuronal activity is it that generates the BOLD contrast?

Neuroscientists study the behavior of individual neurons through single-cell recordings

(to be discussed in more detail in Chapter 9). Microelectrodes can be inserted into the

brains of animals (and also of humans undergoing surgery) and then used to record activity

in individual cells while the animal performs various behavioral tasks. Figure 3.13 illus-

trates a microelectrode recording in the vicinity of a single neuron.

Figure 3.13 A microelectrode making an extracellular recording. (Scientific American Library

[W. H. Freeman 1995])
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Experimenters can track the relation between the firing rates of individual neurons and

where the animal’s attention is directed. These are usually low-level properties, such as the

reflectance properties of surfaces. But in some cases neurons seem to be sensitive to higher-

level properties, firing in response to particular types of object and/or situations. The basic

assumption is that individual neurons are “tuned” to particular environmental properties.

Since the salient property of individual neurons is their firing (or spiking) behavior, it is a

natural assumption that the neural activity correlated with the BOLD contrast is a function

of the firing rates of populations of neurons. In fact, this is exactly what was suggested by

Geraint Rees, Karl Friston, and Christoph Koch in a paper published in 2000. They

proposed that there is a linear relationship between the average neuronal firing rate and

the strength of the BOLD signal – two variables are linearly related when they increase in

direct proportion to each other, so that if one were to plot their relation on a graph it would

be a straight line.

This conclusion was based on comparing human fMRI data with single-cell recordings

from monkeys. In fact, their study seemed to show that each percentage increase in the

BOLD contrast is correlated with an average per second increase of nine spikes per unit. If

the Rees–Friston–Koch hypothesis is correct, then the BOLD response directly reflects the

average firing rate of neurons in the relevant brain area, so that an increase in the BOLD

contrast is an index of higher neural firing activity.

Neurons do more than simply fire, however. We can think of a neuron’s firing as its

output. When a neuron fires it sends a signal to the other neurons to which it is connected.

This signal is the result of processing internal to the neuron. This processing does not

always result in the neuron’s firing. Neurons are selective. They fire only when the level of

internal activity reaches a particular threshold. This means that there can be plenty of

activity in a neuron even when that neuron does not fire.

We might think of this as a function of the input to a neuron, rather than of its output.

A natural question to ask, therefore, is how cognitively relevant this activity is. And, given

that we are thinking about the relation between neural activity and the BOLD contrast, we

have a very precise way of formulating this question. We can ask whether the BOLD signal

is correlated with the input to neurons, or with their output (as Rees, Friston, and Koch had

proposed). This is exactly the question explored in a very influential experiment by Nikos

Logothetis and collaborators.

Logothetis, “The Underpinnings of the BOLD Functional
Magnetic Resonance Imaging Signal” (2001)

Logothetis compared the strength of the BOLD signal against different measures of neural

activity in the monkey primary visual cortex (see Section 3.2 for a refresher on where the

primary visual cortex is and what it does). The team measured neural activity in an

anesthetized monkey when it was stimulated with a rotating checkerboard pattern while

in a scanner. In addition to using fMRI to measure the BOLD contrast, researchers used

microelectrodes to measure both input neural activity and output neural activity. This is

The Neural Correlates of the BOLD Signal 91



particularly challenging from an engineering point of view. Since an fMRI scanner gener-

ates a powerful magnetic field, the microelectrodes needed to be nonmagnetic.

At the output level they measured the firing rates both of single neurons and of small

populations of neurons near the electrode tip (“near” here means within 0.2 mm or so). In

Figure 3.14 these are labeled SDF (spike density function) and MUA (multiunit activity).

The local field potential (LFP) is an electrophysiological signal believed to be correlated

with the sum of inputs to neurons in a particular area. It is also measured through a

microelectrode, but the signal is passed through a low-pass filter that smooths out the

quick fluctuations in the signal that are due to neurons firing and leaves only the low-

frequency signal that represents the inputs into the area to which the electrode is sensitive

(an area a few millimeters across).

The striking conclusion reached by Logothetis and his team is that the BOLD contrast is

more highly correlated with the LFP than with the firing activity of neurons (either at the

single-unit or multiunit level). This is nicely illustrated in the graph in Figure 3.14. In many

cases, the LFP will itself be correlated with the firing activity of neurons (which is why

Logothetis’s results are perfectly compatible with the results reached by Rees, Friston, and

Koch). But, if Logothetis’s datado indeedgeneralize, then they showthatwhen spiking activity

and LFP are not correlated, the LFP is the more relevant of the two to the BOLD contrast.

Summary

This chapter has explored the “turn to the brain” that took place in cognitive science during the

1980s. This involved the development of experimental paradigms for studying the information

pathways in the brain from the bottom up. These experimental paradigms included lesion studies
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Figure 3.14 Simultaneous microelectrode and fMRI recordings from a cortical site showing the

neural response to a pulse stimulus of 24 seconds. Both single- and multiunit responses adapt a

couple of seconds after stimulus onset, with LFP remaining the only signal correlated with the

BOLD response. (Adapted from Bandettini and Ungerleider 2001)
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on monkeys, as well as neuroimaging of human brains. It also involved the development of

computational modeling techniques based on an idealized model of how neurons work.

The first example we looked at was the two visual systems hypothesis developed by Mishkin

and Ungerleider primarily on the basis of monkey experiments. We then looked at the emergence

of parallel distributed processing models in the 1980s and reviewed a famous application by

Gorman and Sejnowski to the problem of distinguishing rocks from mines in sonar recordings. The

last three sections focused on neuroimaging. We began with positron emission tomography (PET)

and reviewed an influential set of experiments on single-word processing from Petersen, Fox,

Posner, and Mintun. For many applications, PET has been superseded by functional magnetic

resonance imaging (fMRI), not least because it allows event-related experimental designs, as

opposed to the blocked designs used in PET and early fMRI studies. We then looked at the

power of the event-related design in the context of experiments by Brewer, Zhao, Desmond,

Glover, and Gabrieli on predicting how well visual experiences would be remembered. Finally, we

turned to the neural correlates of the BOLD contrast, which is what fMRI measures directly. The

BOLD contrast is a hemodynamic response, a function of blood oxygen levels. But what do blood

oxygen levels tell us about neural activity? An elegant set of experiments by Nikos Logothetis

tackle this question.

Checklist

Ungerleider and Mishkin’s Two Visual Systems Hypothesis

(1) The cross-lesion disconnection paradigm, coupled with various other anatomical and neurological

methods, was used to identify two different information-processing pathways for visual information.

(2) Both pathways start from the primary visual cortex.

(3) Information relevant to object identification and recognition travels along the ventral pathway,

from the primary visual cortex to the inferior temporal cortex via the prestriate cortex.

(4) Information relevant to locating objects flows from the primary visual cortex to the posterior

parietal lobe.

Information Processing in Artificial Neural Networks

(1) These networks are designed to reflect certain high-level features of how the brain processes

information, such as its parallel and distributed nature.

(2) The neuron-like units in artificial neural networks are organized into layers, with no connections

between units in a single layer.

(3) The overall behavior of the network is determined by the weights attached to the connections

between pairs of units in adjacent layers.

(4) Networks “learn” by adjusting the weights in order to reduce error.

(5) Artificial neural networks are particularly suited to pattern recognition tasks, such as discriminating

sonar echoes caused by mines from those caused by rocks.

Functional Neuroimaging: PET and the Example of Single-Word Processing

(1) PET allows brain activity to be studied noninvasively by measuring blood flow in the brain while

subjects are performing particular cognitive tasks.
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(2) The paired-subtraction paradigm focuses on the brain activity specific to the task by subtracting

out the activity generated by carefully chosen control tasks.

(3) In studies of how single words are processed, experimenters constructed a four-level hierarchy of

tasks of increasing complexity.

(4) The patterns of activation they identified across the different tasks supported a parallel rather than

a serial model of single-word processing.

Functional Neuroimaging: Event-Related fMRI and Predicting How Well Visual

Experiences Will Be Remembered

(1) Functional magnetic resonance imaging (fMRI) measures levels of blood oxygen in the brain (the

BOLD contrast/signal), and has superseded PET as a neuroimaging tool for many applications.

(2) Event-related fMRI allows researchers to study the BOLD signal associated with individual neural

events, unlike the blocked-design standard used in PET imaging.

(3) Event-related fMRI works because, even though the BOLD response is delayed and takes time to

develop, it behaves in a linear manner that allows a cumulative BOLD signal derived from multiple

individual events to be broken down into its constituent elements.

(4) We illustrated event-related fMRI through a study of how individual visual experiences are

encoded into memory.

Neural Correlates of the BOLD Signal

(1) Functional magnetic resonance imaging (fMRI) provides a measure of blood flow in terms of levels

of blood oxygenation (the BOLD signal), giving an index of cognitive activity.

(2) This raises the question of how this cognitive activity is related to neural activity.

(3) One possibility is that cognitive activity detected by fMRI is correlated with the outputs of

populations of neurons (as manifested in their firing activity). Another possibility is that the

correlation is with the input to populations of neurons (as measured by the local field potential).

(4) The experiments of Logothetis and his collaborators seem to show that the correlation is with the

input to neural areas, rather than with their output.

Further Reading

Ungerleider and Mishkin’s paper “Two cortical visual systems” is reprinted in Cummins and

Cummins 2000. Mishkin, Ungerleider, and Macko 1983/2001 is a little more accessible. David

Milner and Melvyn Goodale have developed a different version of the two visual systems

hypothesis, placing much more emphasis on studies of brain-damaged patients. See, for example,

their book The Visual Brain in Action (2006). A more recent summary can be found in Milner and

Goodale 2008 (including discussion of Ungerleider and Mishkin). A different development in terms

of vision for action versus vision for higher mental processes has been proposed by the cognitive

neuroscientist Marc Jeannerod, as presented in Ways of Seeing, coauthored with the philosopher

Pierre Jacob (Jacob and Jeannerod 2003). A recent critique of the two-system account (with

commentary from Milner, Goodale, and others) can be found in Schenk and McIntosh 2010. See

Rossetti et al. 2017 for an up-to-date overview.
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The Handbook of Brain Theory and Neural Networks (Arbib 2003) is the most comprehensive

single-volume source for different types of computational neuroscience and neural computing,

together with entries on neuroanatomy and many other “neural topics.” It contains useful

introductory material and “road maps.” Dayan and Abbott 2005 and Trappenberg 2010 are other

commonly used introductory textbooks. Scholarpedia.org is also a good source for introductory

articles specifically on topics in computational neuroscience. McLeod, Plunkett, and Rolls 1998 is a

good introduction to connectionism that comes with software allowing readers to get hands-on

experience in connectionist modeling. Bechtel and Abrahamsen 2002 is also to be recommended.

Useful article-length presentations are Rumelhart 1989 (in Posner 1989, reprinted in Haugeland

1997) and Churchland 1990b (in Cummins and Cummins 2000). A more recent discussion of

connectionism can be found in McClelland et al. 2010, with commentary and target articles from

others in the same issue. The mine/rock network described in the text was first presented in

Gorman and Sejnowski 1988 and is discussed in Churchland 1990a. There are more references to

literature on neural networks in the Further Reading sections for Chapters 5 and 10. Recent

interest in neural networks has been associated with deep learning, discussed in Chapter 12.

A very readable book introducing PET and functional neuroimaging in general is Posner and Raichle

1994, written by two senior scientists participating in the lexical access experiments discussed in the

text. These experiments are discussed in the article by Petersen et al. cited in the text and also (more

accessibly) in Petersen and Fiez 2001. Rowe and Frackowiak 2003 is an article-length introduction to

the basic principles of functional neuroimaging. Another good introduction to neuroimaging, including

discussion ofmany of the experimentsmentioned in this chapter (andwith a lot of colorful illustrations),

is Baars and Gage 2010.

For the specifics of event-related fMRI see the overviews in Buckner 1998 and Huettel 2012.

The Huettel paper is published in a special issue of the journal Neuroimage edited by Peter

Bendettini and titled “20 years of fMRI” (62:2, August 2012). The study referenced in the text is

Brewer et al. 1998. See also Wagner et al. 1998 in the same issue of Science. For the first study

using event-related fMRI, see Blamire et al. 1992. Dale and Buckner 1997 was another early study.

For specific references on the fMRI technology, see the suggestions for further reading in

Chapter 9. For a survey of some of the general issues in thinking about the neural correlates of the

BOLD signal, see Heeger and Ress 2002 and Raichle and Mintun 2006. Logothetis’s single-

authored 2001 paper in the Journal of Neuroscience is a good introduction to the general issues as

well as to his own experiments. See also Logothetis 2002. A more recent summary can be found in

Goense, Whittingstall, and Logothetis 2012. For the Rees–Friston–Koch hypothesis, see Rees,

Friston, and Koch 2000. For commentary on Logothetis, see Bandettini and Ungerleider 2001. For

an alternative view, see Mukamel et al. 2005. Ekstrom 2010 discusses apparent dissociations

between the BOLD signal and local field potentials.

The Neural Correlates of the BOLD Signal 95



PART II

MODELS AND TOOLS







CHAPTER FOUR

Physical Symbol Systems and
the Language of Thought

OVERVIEW 99

4.1 The Physical Symbol System
Hypothesis 100
Symbols and Symbol Systems 101
Transforming Symbol Structures 102
Intelligent Action and the Physical Symbol

System 106

4.2 From Physical Symbol Systems to the
Language of Thought 106

Intentional Realism and Causation by
Content 108

The Language of Thought and the Relation
between Syntax and Semantics 110

4.3 The Russian Room Argument and the
Turing Test 114
Responding to the Russian Room

Argument 117

Overview

The analogy between minds and digital computers is one of the most powerful ideas in cognitive

science. The physical symbol system hypothesis, proposed in 1975 by the computer scientists

Herbert Simon and Allen Newell, articulates the analogy very clearly. It holds that all intelligent

behavior essentially involves transforming physical symbols according to rules. Section 4.1 explains

the basic idea, while Section 4.2 looks at the version of the physical symbol system hypothesis

developed by the philosopher Jerry Fodor. Fodor develops a subtle and sophisticated argument for

why symbolic information processing has to take place in a language of thought.

Both the general physical symbol system hypothesis and the language of thought hypothesis

distinguish sharply between the syntax of information processing (the physical manipulation of

symbol structures) and the semantics of information processing. The philosopher John Searle has

developed a famous argument (the Chinese room argument) aiming to show that the project of

modeling the mind as a computer is fatally flawed. We look at a version of his argument and at

some of the ways of replying to it in Section 4.3.
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4.1 The Physical Symbol System Hypothesis

In 1975 the Association of Computing Machinery gave their annual Turing Award to two

very influential pioneers of artificial intelligence – Herbert Simon and Allen Newell. As a

great example of the interdisciplinary nature of cognitive science, Simon was actually an

economist and political scientist, rather than a computer scientist (as Newell was). Their

joint contributions to computer science included the Logic Theory Machine (1957) and the

General Problem Solver (1956), two early and very important programs that developed

general strategies for solving formalized symbolic problems.

Newell and Simon gave a public lecture as one of the conditions of receiving the award.

That lecture proposed a bold strategy both for the study of the human mind and for the

emerging field of artificial intelligence (AI). Their manifesto hinged on what they called the

physical symbol system hypothesis, which they proposed as a fundamental law for studying

intelligence.

For Newell and Simon, the physical symbol system hypothesis is as basic to AI as the

principle that the cell is the basic building block of all living organisms is to biology. Here is

how they phrased it:

The physical symbol system hypothesis: A physical symbol system has the necessary

and sufficient means for general intelligent action.

There are two separate claims here. The first (the necessity claim) is that nothing can be

capable of intelligent action unless it is a physical symbol system. So, since humans are

capable of intelligent action, the human mind must be a physical symbol system. The

second (the sufficiency claim) is that there is no obstacle in principle to constructing an

artificial mind, provided that one tackles the problem by constructing a physical symbol

system.

The significance of these two claims depends on what a physical symbol system is. Here

are Newell and Simon again:

A physical symbol system consists of a set of entities, called symbols, which are physical

patterns that can occur as components of another type of entity called an expression (or

symbol structure). Thus a symbol structure is composed of a number of instances (or

tokens) of symbols related in some physical way (such as one token being next to

another). At any instant of time the system will contain a collection of these symbol

structures. Besides these structures, the system also contains a collection of processes

that operate on expressions to produce other expressions: processes of creation, modifi-

cation, reproduction, and destruction. A physical symbol system is a machine that

produces through time an evolving collection of symbol structures.

This passage illustrates four distinctive features of physical symbol systems. Here they are:

1 Symbols are physical patterns.

2 These symbols can be combined to form complex symbol structures.
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3 The physical symbol system contains processes for manipulating symbols and complex

symbol structures.

4 The processes for generating and transforming complex symbol structures can themselves

be represented by symbols and symbol structures within the system.

You might have noticed that a physical symbol system looks very much like an abstract

characterization of a digital computer. That is absolutely correct, as we’ll now see.

Symbols and Symbol Systems

To illustrate the first two ideas in the physical symbol system hypothesis we can go back to

Turing machines, which we first encountered in Section 1.2 as abstract models of compu-

tation. Newell and Simon make clear in their paper how Turing’s work on Turing machines

in the 1930s was the first step toward the physical symbol system hypothesis.

(1) Symbols are physical patterns. For Newell and Simon symbols are physical objects,

just as written letters on a page are physical objects, or spoken words (which are

soundwaves). The symbols in Turing machines are also physical objects. They are inscrip-

tions on the tape that the Turing machine is able to read. What the machine does at any

given moment is fixed by the state it is in and the symbol that is on the cell being

scanned.

Don’t take this too literally, though. Even though a computer has an alphabet composed

of the digits 0 and 1, we will not find any 0s and 1s in it if we open it up. If we dig down

deep enough, all that there is to a computer is electricity flowing through circuits. If an

electrical circuit functions as an on/off switch, then we can view that switch in symbolic

terms as representing either a 0 (when it is off ) or a 1 (when it is on). But there are no digits

to be found in the circuit.

(2) Symbols can be combined to form complex symbol structures. Just as letters can be put

together to form words, the symbols in any physical symbol system can be combined to

form word-like symbol structures. Those word-like structures can then be put together to

form sentence-like structures. Both types of combination are governed by strict rules. You

can think of these strict rules as telling the symbol system which combinations of symbols

count as grammatical.

These rules are likely to be recursive in form. That means that they will show how to get

from an acceptable combination of symbols to a more complex combination that is still

acceptable. The rules for how to define what counts as a sentence in the branch of logic

known as sentential logic or propositional logic provide a good illustration of recursive

rules and how they work. See Box 4.1.

Turing machines can scan only a single cell at a time, but they are still capable of

working with complex symbol structures because those complex symbol structures can

be built up from individual symbols in adjacent cells. The Turing machine needs to

know two things: It needs to know what symbols can follow other symbols. And it

needs some way of marking the end of complex symbols. The first can come from

instructions in the machine table, while for the second there are symbols that serve as
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punctuation marks, effectively telling the scanner when it has arrived at the end of a

complex symbol.

Transforming Symbol Structures

The third feature of physical symbol systems involves transformation.

(3) The physical symbol system contains processes for manipulating symbols and complex

symbol structures. Here we have the distinctive claim of the physical symbol system

hypothesis. Thinking is no more (and no less) than transforming symbol structures

according to rules. Any system that can transform symbol structures in a sophisticated

enough way will qualify as intelligent. According to Newell and Simon when we fully

understand what is going on in intelligent agents (such as human beings), all we will

ultimately find is symbol structures being transformed in rule-governed ways.

BOX 4.1 Defining Sentences in Propositional Logic

Propositional logic studies the logical relations holding between whole sentences, or propositions.

The language of propositional logic is very simple. It contains basic symbols for sentences (such as

“P,” “Q,” and “R”), together with a small set of logical connectives.

A typical formulation of propositional logic might have three connectives (the so-called Boolean

connectives). These are “¬,” read as “not-”; “∨,” read as “or”; and “^,” read as “and.”

These logical connectives allow sentence symbols to be combined to form more complex

sentences. So, for example, “P ^ Q” is a sentence. It is true just when the two sentences P and

Q are both true.

Propositional logic has clear and unambiguous rules for determining what counts as a legitimate

sentence. These rules fix when the rules governing the connectives have been correctly applied.

The legitimate combinations of symbols in the alphabet might typically be defined as follows.

(a) Any sentence symbol is a sentence.

(b) If “φ” is a sentence then “¬ φ” is a sentence.

(c) If “φ” and “ψ” are sentences, then “φ ^ ψ” is a sentence.

(d) If “φ” and “ψ” are sentences, then “φ ∨ ψ” is a sentence.

These are examples of what are called recursive rules. They show how, starting with a basic set of

sentences (the sentence symbols), you can construct arbitrarily complex formulas that will count as

genuine sentences.

Note that “φ” and “ψ” can stand here for any formula, not just for sentence symbols. So you

can apply the recursive definition to show that ¬(P ^ ¬P) is a genuine sentence of

propositional logic.

Can you see how? (Hint: If P is a sentence symbol, then it is a sentence, by (a). If P is a sentence,

then so is ¬P, by (b). Continue in this vein.)
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In the background here is Newell and Simon’s fundamental idea that the essence of

intelligent thinking is the ability to solve problems. Intelligence consists in the ability to

work out, when confronted with a range of options, which of those options best matches

certain requirements and constraints.

Intelligence cannot be applied without what might abstractly be called a search-space.

The notion of a search-space is very general. Consider, for example, the position of one of

the players halfway through a chess match. Each chess player has a large number of

possible moves and a clearly defined aim – to checkmate her opponent. The possible moves

define the search-space and the problem is deciding which of the possible moves will move

her closest to her goal.

Another example (much studied by computer scientists and mathematicians) is a trav-

eling salesperson who starts in a particular city (say, Boston) and has to visit twenty other

cities as quickly and efficiently as possible before eventually returning to Boston. Here we

can think about the search-space in terms of all the possible routes that start and end in

Boston and go through the twenty cities (perhaps visiting some more than once). The

diagram at the top in Figure 4.1 illustrates a simpler traveling salesperson problem with

only five cities (a, b, c, d, and e).

Search-spaces are typically represented in terms of states. There is an initial state (the

start state) and a set of permissible transformations of that start state. The search-space

consists of all the states that can be reached from the start state by applying the permissible

transformations. The transformations can be carried out in any order. In the chess

example, the start state is a particular configuration of the chess pieces and the permissible

transformations are the legal moves in chess. In the traveling salesman problem, the start

state might be Boston, for example, and the permissible transformations are given by all

the ways of getting directly from one city to another. This means that each state of the

traveling salesman problem is given by the current city, together with the cities already

covered and the cities still left to visit.

Computer scientists standardly represent search-spaces in terms of trees. So, for

example, the search-space for the traveling salesperson problem is given by a tree whose

first node is the starting city. The diagram at the bottom of Figure 4.1 illustrates a part of

the search-space for our five-city version of the traveling salesperson problem. A branch

from thefirst node (a, the start city) goes to a node representing each city to which the start

city is directly connected – i.e., cities b, c, d, and e. From each of those nodes, further

branches connect each city to all the other cities to which it is directly connected. And

so on.

What counts as solving a problem? Basically, you’ve solved a problem when you’ve

found the solution state in the search-space. In chess, the solution state is any configur-

ation of the board in which the opponent’s king is in checkmate. In the traveling salesper-

son problem, the solution is the shortest branch of the tree that ends with Boston and that

has nodes on it corresponding to each city that the salesman needs to visit.

But how is that done? Obviously, you have to search through the search-space until you

find a solution state. But this can be much harder than it sounds. Brute force searches that

follow each branch of the tree typically only work for very simple problems. It does not

The Physical Symbol System Hypothesis 103



take long for a problem space to get so big that it cannot be exhaustively searched in any

feasible amount of time.

The traveling salesperson problem is a great example. If there are n cities, then it turns

out that there are (n ± 1)! possible routes to take into account, where (n ± 1)! = (n ± 1) ²
(n ± 2) ² (n ± 3) . . . This number of routes is not too many for the five-city version of the

problem depicted in Figure 4.1 (it gives twenty-four different routes). But the problem gets

out of control very quickly. A twenty-city version gives approximately 6 ² 10

ways for a traveling salesperson to start in Boston and travel through the other nineteen

cities visiting each exactly once. Checking one route per second, we would need more than

the entire history of the universe to search the problem space exhaustively.
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An instance of the traveling
salesman problem

Figure 4.1 A typical traveling salesperson problem. The top diagram depicts the problem.

A traveling salesperson has to find the shortest route between five cities. The diagram below

depicts part of the search-space. A complete representation of the search-space would show

twenty-four different routes.
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Newell and Simon developed their General Problem Solver (GPS) program as a way of

solving problems of this type (although they focused on much simpler problems than the

traveling salesperson problem, which still has no general solution).

The basic idea behind the GPS program is relatively straightforward. The program uses

means–end analysis. Here are simple instructions for applying means–end analysis.

1 Evaluate the difference between the current state and the solution state.

2 Identify a transformation that reduces the difference between the current state and the

solution state.

3 Check that the transformation in (2) can be applied to the current state.

3a. If it can, then apply it and go back to step (1).

3b. If it can’t, then return to (2).

Means–end analysis is an example of what Newell and Simon call heuristic search. Heuristic

search techniques are techniques for searching through a search-space that do not involve

exhaustively tracing every branch in the tree until a solution is found. Heuristic search

techniques reduce the size of the search-space in order to make the search process more

manageable.

Exercise 4.1 Explain howmeans–end analysis makes it more manageable to search the search-space.

Here is the problem of the foxes and the chickens – a type of problem that Newell and

Simon showed could be solved by their GPS program. Imagine that there are three

chickens and three foxes on one side of a river and they all need to get over to the other

side. The only way to cross the river is in a boat that can take only two animals (or fewer)

at a time. The boat can cross in either direction, but if at any point the foxes outnumber

the chickens then the outnumbered chickens will be eaten. How can you get all the

chickens and foxes onto the other side of the river without any of the chickens

being eaten?

Here each state specifies which animals are on each bank and which in the boat (as well

as the direction in which the boat is traveling). The start state obviously has all six on one

bank (say the left bank) with nobody in the boat or on the other bank. The solution state is

the state that has all six on the right bank, with nobody in the boat or on the other bank.

The permissible transformations are defined by the rule that the boat cannot carry more

than two animals at a time.

The foxes and chickens problem is a great example of how the GPS program works. If we

feed into the GPS program representations of the start state and the solution, or goal state,

the program employs various transformation strategies to minimize the difference between

the start state and the goal state. The eventual solution is a series of representations, whose

first member is a representation of the start state and whose final member is a representa-

tion of one of the goal states, and where each member is derived from its predecessor by a

permissible transformation.

Exercise 4.2 Find a solution to the foxes and chickens problem.
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A final point. These rule-governed transformations are algorithmic. An algorithm is a

finite set of unambiguous rules that can be applied systematically to transform an object or

set of objects in definite and circumscribed ways. Algorithms are purely mechanical pro-

cedures. They can be followed blindly, without any exercise of judgment or intuition.

Elementary school arithmetic provides plenty of examples of algorithms, such as the

algorithms for multiplying pairs of numbers and for long division.

Intelligent Action and the Physical Symbol System

The final feature of physical symbol systems is what really makes symbol systems capable

of intelligent action.

(4) The processes for generating and transforming complex symbol structures can themselves be

represented by symbols and symbol structures within the system. A fundamental feature of

modern computers – so familiar that most of us never think about it – is the fact that a

single computer (a single piece of hardware) can run many different programs, often

simultaneously. This capability is what distinguishes a general-purpose computer from a

specialized computing machine such as a pocket calculator. Computers can be pro-

grammed in this way because they can contain symbol structures that encode information

about, and instructions for, other symbol structures.

Alan Turing proved that it is possible to construct a special kind of Turing machine

(a universal Turing machine) that can mimic any specialized Turing machine imple-

menting a particular algorithm. The universal Turing machine is a general-purpose

computer. You can think of the specialized computers as software programs that run

on the more general operating system of the universal Turing machine. The universal

Turing machine is possible because Turing machine tables can be encoded as numbers,

and hence can serve as inputs to Turing machines. The physical symbol system

hypothesis builds something like this feature into the characterization of an intelligent

system.

4.2 From Physical Symbol Systems to the Language of Thought

The physical symbol system hypothesis tells us that intelligent agents solve problems

by physically transforming symbolic structures. But we still need to know what these

symbolic structures are, how they are transformed, and how those transformations

give rise to intelligent action of the sort that human beings might carry out. This

section looks at a proposal for answering these questions. This is the language of

thought hypothesis developed by the philosopher and cognitive scientist Jerry Fodor

(1935–2017).

According to Fodor’s language of thought hypothesis, the basic symbol structures in the

mind that carry information are sentences in an internal language of thought (sometimes

called Mentalese). Information processing works by transforming those sentences in the

language of thought.
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Our starting point for exploring this idea is the basic fact that the mind receives infor-

mation about its environment. Some of this information is carried by light waves arriving

at the retina or sound waves hitting the eardrum. But in general, our behavior is not

determined by the information that we receive. Different people, or the same person at

different times, react differently to the same situation. There is no standard response to the

pattern of sound waves associated (in English) with a cry of “Help!” for example. How we

behave depends upon what our minds do with the information that they receive – how

they process that information. If I run to your assistance when you cry “Help!” it is because

my mind has somehow managed to decode your utterance as a word in English, worked

out what you are trying to communicate, and then decided how to respond. This is all

complex processing of the initial information that arrived at my eardrum.

But how does this information processing take place? How do vibrations on the ear

drum lead to the muscle contractions involved when I save you from drowning? The

information has to be carried by something. We know how the information is carried in

the auditory system. We know that vibrations in the eardrum are transmitted by the

ossicles to the inner ear, for example. What happens the further away the information

travels from the eardrum is not so well understood, but another integral part of the general

picture of the mind as physical symbol system is that there are physical structures that

carry information and, by so doing, serve as representations of the immediate environment

(or, of course, of things that are more abstract and/or more remote).

It is a basic assumption of cognitive science that information processing is, at bottom, a

matter of transforming these representations in a way that finally yields the activity in the

nervous system that “instructs” my limbs to jump into the water.

Information processing involves many different kinds of representation. This is illus-

trated by the example just given. The whole process begins with representations that carry

information about vibrations in the eardrum. Somehow these representations get trans-

formed into a much more complex representation that we might describe as my belief that

you are in danger. This belief is in an important sense the “motor” of my behavior (my

jumping into the water to rescue you). But it is not enough on its own. It needs to interact

with other representations (such as my belief that I can reach you before you drown, and

my desire to rescue you) in order to generate what I might think of as an intention to act in a

certain way. This intention in turn gives rise to further representations, corresponding to

the motor instructions that generate and control my bodily movements.

Among all these different types of representation, Fodor is particularly interested in the

ones that correspond to beliefs, desires, and other similar psychological states. These

psychological states are often called propositional attitudes by philosophers. They are called

this because they can be analyzed as attitudes to propositions. Propositions are the sorts of

thing that are expressed by ordinary sentences. So, there is a proposition expressed by the

sentence “That person will drown” or by the sentence “It is snowing in St. Louis.” Thinkers

can have different attitudes to those propositions. I might fear the first, for example, and

believe the second.

Fodor’s starting point in thinking about propositional attitudes is that we are, by and

large, pretty good at explaining and predicting other people’s behavior in terms of what
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they believe about the world and what they want to achieve. He thinks that this success is

something that itself needs explanation. Why is the vocabulary of beliefs and desires (our

belief–desire psychology or propositional attitude psychology) so deeply ingrained in us? Why

does it seem so indispensable in our social interactions and social coordination? How and

why do explanations that appeal to beliefs and desires actually work? And, in particular,

why are these explanations so successful?

According to Fodor, there can be only one possible answer. Belief–desire psychology is

successful because it is true. There really are such things as beliefs and desires. They are

physical items that cause us to behave in certain ways. Belief–desire explanations are

successful when they correctly identify the beliefs and other states that caused us to act

in the way that we did.

If we say that someone jumped into the water because she believed that a child was

drowning and wanted to save him, then what we are really claiming is that that person’s

bodily behavior was caused by internal items corresponding to the belief that someone is

drowning and the desire to save her. This view is often called intentional realism.

Fodor’s argument for the language of thought hypothesis is, in essence, that the

hypothesis of intentional realism is the only way of explaining how belief–desire explan-

ations can work. We will examine his argument in the next two subsections.

Exercise 4.3 Explain intentional realism in your own words.

Intentional Realism and Causation by Content

Intentional realism treats beliefs and desires as the sorts of things that can cause behavior.

But this is a special type of causation. There is a fundamental difference between my leg

moving because I am trying to achieve something (perhaps the journey of a thousandmiles

that starts with a single step) and my leg moving because a doctor has hit my knee with his

hammer. In the first case, what causes my movement is what the desire is a desire for,

namely, the beginning of the journey of a thousand miles. This is what philosophers call

the content of the desire. There is nothing corresponding to a desire with content (or any

other state with content) when a doctor hits my knee with a hammer. The movement that

I make is simply a response to physical stimulus. It is not a response to something that

I want to achieve.

This phenomenon, often called causation by content, is something that any version of

intentional realism has to explain. That means taking into account the rational relations

between belief and desires, on the one hand, and the behavior that they cause on the other.

Beliefs and desires cause behavior that makes sense in light of them. Moving my leg is a

rational thing to do if I desire to begin the journey of a thousand miles and believe that

I am pointing in the right direction.

Yet, on the face of it, causation by content is deeply mysterious. It depends upon

representations (stored information about the environment). In one sense representations

are simply objects like any other – they might be patterns of sound waves, populations of

neurons, or pieces of paper. Thought of in this way, it is no more difficult to understanding
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how representations can cause behavior than it is to understand how the doctor’s hammer

can make my leg move.

But the representations that we are interested in (such as beliefs and desires) are also

things that bear a special semantic relation to the world – they have meanings. And the

effects that representations have in the world is a function of what they mean. So, the

puzzle, therefore, is how representations can have causal effects within the world as

a function of their semantic properties, as a function of the relations in which they stand

to other objects in the world (and indeed to objects that may not in fact even be in

existence).

Fodor, along with almost all cognitive scientists and the vast majority of philosophers,

holds that brains and the representations that they contain are physical entities. This

means that brains can only be sensitive to certain types of property in mental representa-

tions. My utterance of the word “cat” is ultimately no more than a particular pattern of

sound waves. These sound waves have certain physical properties (amplitude, frequency,

wavelength, and so on) that can have certain effects on the brain. But the fact that those

sound waves represent cats for English-speakers is a very different type of property (or at

least, so the argument goes).

Let us call the physical properties that can be manipulated within brains formal proper-

ties. We call them this because they have to do with the physical form (i.e., the shape) of the

representation. And let’s use semantics for the properties that enable representations to

represent – just as semantics is the branch of linguistics that deals with the meanings of

words (how words represent).

This gives us another way of putting the problem. How can the brain be an information-

processing machine if it is blind to the semantic properties of representations? How can the

brain be an information-processing machine if all it can process are the formal properties of

representations?

Exercise 4.4 Explain the contrast between formal and semantic properties in your own words.

At this point, we can see the particular slant that Fodor is putting on the physical symbol

system hypothesis. Computers essentially manipulate strings of symbols. A computer

programmed in binary, for example, manipulates strings of 1s and 0s. This string of 1s

and 0s might represent a natural number, in the way that in binary 10 represents the

number 2 and 11 represents the number 3. Or it might represent something completely

different. It might represent whether or not the individual members of a long series of

pixels are on or off, for example.

In fact, with a suitable coding, a string of 1s and 0s can represent just about anything.

As far as the computer is concerned, however, what the string of 1s and 0s represents is

completely irrelevant. The semantic properties of the string are irrelevant. The computer

simply manipulates the formal properties of the string of 1s and 0s. In fact, it would be

more accurate to say that the computer operates on numerals rather than numbers.

Numerals are just symbols with particular shapes. Numbers are what those numerals

represent.
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But here’s where the computer program comes in. The computer is programmed to

manipulate strings of 1s and 0s in certain ways that yield the right result, even though the

computer has no idea what that right result is. Take an adding machine, for example.

Suppose it is given two strings of 0s and 1s and in response outputs a third string of 1s

and 0s. If the first two strings represent the numbers 5 and 7, respectively, then (if the

machine is well designed) the third string will be a binary representation of the

number 12.

But even though all the computer is doing is mechanically manipulating 1s and 0s

(numerals not numbers), operating on their formal properties, it nonetheless comes up

with the right answer, all. So, although the computer itself is not concerned with what

“12” means, the computer program must respect the rules of addition in order for the

computational result – “12” – to have meaning.

In essence, what computer programmers do when they are programming an adding

machine, is writing code so that purely mechanical manipulations of numerals will cor-

rectly track arithmetical relations between the numbers that the numerals represent. So,

the adding machine must manipulate the numerals “7” and “5” in such a way that taking

them as inputs to the machine yields the numeral “12,” because it is an arithmetical fact

that 7 + 5 = 12 (which is a statement about numbers, not numerals).

Fodor thinks that way of thinking about computer programs is a great model for the

human brain. Brains are physical systems that can be sensitive only to the formal proper-

ties of mental representations. But nonetheless, as information-processing machines, they

(like computers) have to respect the semantic properties of mental representations. The

language of thought is what makes this possible.

Exercise 4.5 Explain the analogy between brains and computers in your own words.

The Language of Thought and the Relation
between Syntax and Semantics

Here are the three main claims of Fodor’s language of thought hypothesis.

1 Causation through content takes place through causal interactions between physical states.

2 These physical states have the structure of sentences, and their sentence-like structure

determines how they are made up and how they interact with each other.

3 Causal transitions between sentences in the language of thought respect the rational

relations between the contents of those sentences (what they mean).

According to Fodor, we think in sentences, but these are not sentences of a natural

language such as English. The language of thought is much closer to a logical language,

such as the propositional calculus (which we looked at briefly earlier in this chapter – see

Box 4.1). It is supposed to be free of the nuances, ambiguities, and multiple layers of

meaning that we find in English and other natural languages.
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The analogy between the language of thought and logical languages is at the heart of

Fodor’s solution to the problem of causation by content. It is what lies behind claim (3).

The basic fact about formal languages that Fodor exploits is the clear separation that they

incorporate between syntax and semantics. Syntax has to do with symbols and the rules for

combining them. You can think of it as the logical equivalent of grammar. Semantics, on

the other hand, has to with what the symbols actually mean and, relatedly, to what makes

sentences true (or false).

To illustrate this general distinction, we can use the predicate calculus. This is a logical

language more powerful and sophisticated than the propositional calculus we looked at in

Box 4.1. Unlike the propositional calculus (which only allows us to talk about complete

sentences or propositions) the predicate calculus allows us to talk directly about individuals

and their properties. So, for example, the predicate calculus allows us to formalize infer-

ences such as:

Hubert is laughing

Therefore, someone is laughing

Or:

Everyone is laughing

Therefore, Hubert is laughing

In order to represent these inferences, the predicate calculus has special symbols. These special

symbols include individual constants that name particular objects, and predicate letters that

serve to name properties. The symbols are typically identifiable by simple typographical

features (such as uppercase for predicate letters and lowercase for individual constants) and

they can be combined to make complex symbols according to certain rules. It also includes

quantifiers, whichare logical expressions corresponding to the Englishwords“some” and “all.”

From a syntactic point of view, a formal language such as the predicate calculus is simply

a set of symbols of various types together with rules for manipulating those symbols

according to their types. These rules identify the symbols only in terms of their typograph-

ical features. An example would be the rule that the space after an uppercase letter (e.g., the

space in “F–”) can be filled only with a lowercase letter (e.g., “a”). This rule is a way of

capturing at the syntactic level the intuitive thought that properties apply primarily to

things – because uppercase letters (such as “F–”) can only be names of properties, while

lowercase letters (such as “a”) can only be names of objects. The rule achieves this,

however, without explicitly stating anything about objects and properties. It just talks

about symbols. It is a matter purely of the syntax of the language.

The connection between the formal system, on the one hand and what it is about, on

the other, comes at the level of semantics. When we think about the semantics of a formal

language, we assign objects to the individual constants and properties to the predicates. We

identify the particular object that each individual constant names, for example. To provide

a semantics for a language is to give an interpretation to the symbols it contains – to turn it

from a collection of meaningless symbols into a representational system.
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Exercise 4.6 Explain the distinction between syntax and semantics in your own words.

Fodor’s basic proposal is that we understand the relation between sentences in the

language of thought and their content (or meaning) on the model of the relation between

syntax and semantics in a formal system. Sentences in the language of thought can be

viewed purely syntactically. From the syntactic point of view they are physical symbol

structures composed of basic symbols arranged according to certain rules of composition.

Or they can be viewed semantically in terms of how they represent the world (in which

case they are being viewed as the vehicles of propositional attitudes).

So now, suppose we think that the causal transitions between sentences in the language of

thought are essentially syntactic, that is, sensitive only to the formal properties of the relevant

symbols, regardless of the symbols’meanings. Then we need to ask the following question:

Why do the syntactic relations between sentences in the language of thought map onto

the semantic relations holding between the contents of those sentences?

If we take seriously the idea that the language of thought is a formal system, then this

question has a perfectly straightforward answer. Syntactic transitions between sentences in

the language of thought track semantic transitions between the contents of those sen-

tences for precisely the same reason that syntax tracks semantics in any properly designed

formal system.

Fodor can (and does) appeal to well-known results in meta-logic (the study of the

expressive capacities and formal structure of logical systems). These results establish a

significant degree of correspondence between syntax and semantics. So, for example, it

is known that the first-order predicate calculus is sound and complete. That is to say, in

every well-formed proof in the first-order predicate calculus the conclusion really is a

logical consequence of the premises (soundness) and, conversely, for every argument in

which the conclusion follows logically from the premises and both conclusion and prem-

ises are formulable in the first-order predicate calculus there is a well-formed proof

(completeness).

The combination of soundness and completeness has the following important conse-

quences. If a series of legitimate and formally definable syntactic transformations lead from

formula A to a second formula B, then one can be sure that A cannot be true without

B being true – and, conversely, if A entails B in a semantic sense then one can be sure that

there will be a series of formally definable inferential transitions leading from A to B.

Here’s an example. Suppose that we have two complex symbols, “Fa” and “Ga.” Each of

these symbols is a sentence in the language of thought with a particular syntactic shape.

We know that “F–” and “G–” are symbols for predicates. Let us say that “F–”means “– is tall”

and “G–” means “– has red hair.”We also know that “a” is a name symbol. Let us say that

“a” names Georgina. The meaning of “Fa” is that Georgina is tall, while the meaning of

“Ga” is that Georgina has red hair.

Table 4.1 shows how a very simple piece of thinking might be analyzed by the language

of thought hypothesis.

112 Physical Symbol Systems and the Language of Thought



The table shows how two physical symbols: “Fa” and “Ga” are transformed in two

inferential steps into the more complex physical symbol “9x (Fx & Gx).” Here “9x –” is

the symbol for “there is at least one x such that –,” so that this sentence means “There is at

least one thing that is both F and G.”

The rules that achieve this transformation are purely syntactic. They are simply rules for

manipulating symbol structures. But when we look at the relation between the meanings

of “Fa” and “Ga,” on the one hand, and the meaning of “9x (Fx & Gx),” on the other, we

see that those purely syntactic transformations preserve the logical relations between the

propositions that the symbols stand for. If it is true that Georgina is tall and that Georgina

has red hair, then it is certainly true that at least one person is tall and has red hair.

In sum, beliefs and desires are realized by language-like physical structures (sentences in

the language of thought), and practical reasoning and other forms of thinking are ultim-

ately just causal interactions between those structures. These causal interactions are sensi-

tive only to the formal, syntactic properties of the physical structures. Yet, because the

language of thought is a formal language with analogs of the formal properties of sound-

ness and completeness, these purely syntactic transitions respect the semantic relations

between the contents of the relevant beliefs and desires. This is how (Fodor claims)

causation by content can take place in a purely physical system such as the human brain.

And so, he argues, commonsense psychological explanation is vindicated by thinking of

the mind as a computer processing sentences in the language of thought.

The line of reasoning that leads to the language of thought hypothesis is fairly compli-

cated. To make it easier to keep track of the different steps, I have represented them

diagrammatically in Figure 4.2.

TABLE 4.1 Syntax and semantics in the predicate calculus

SYMBOLS TRANSFORMATION RULE MEANING

1. Fa 1. Georgina is tall

2. Ga 2. Georgina has red

hair

3. (Fa & Ga) If complex symbols “S” and “T” appear on

earlier lines, then it is legitimate to write

“(S & T)”

3. Georgina is tall

and has red hair

4. 9x (Fx & Gx) If on an earlier line there is a complex symbol

containing a name symbol, then it is legitimate

to replace the name symbol by “x” and write

“9x –” in front of the complex symbol [NOTE:
“9x –” is the symbol for “there is at least one x
such that –”]

4. At least one

person is tall and

has red hair
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Exercise 4.7 Use the flowchart in Figure 4.2 to explain Fodor’s argument in your own words.

4.3 The Russian Room Argument and the Turing Test

We need now to consider a fundamental objection to the very idea of the physical symbol

system hypothesis. This objection comes from the philosopher John Searle, who is con-

vinced that no machine built according to the physical symbol system hypothesis could

possibly be capable of intelligent behavior.

Successful practices of 
belief–desire explanation

Intentional realism

Problem of causation 
by content

Distinction between formal 
properties and semantic 

properties

Language of 
thought (LOT) hypothesis

Syntactic level

Sentences in the LOT
interacting in virtue of 
their formal properties

Logical deducibility

Semantic level

Propositions that stand 
in logical relations 

to each other

Logical consequence

Figure 4.2 The structure of Fodor’s argument for the language of thought hypothesis.
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Using a thought experiment, Searle tries to show that the physical symbol system

hypothesis is completely mistaken. He rejects the idea that manipulating symbols is

sufficient for intelligent behavior – even when the manipulation produces exactly the

right outputs. What he tries to do is describe a situation in which symbols are correctly

manipulated, but where there seems to be no genuine understanding and no genuine

intelligence.

Searle asks us to imagine a machine that he calls a Russian room. (Searle originally used

the example of Chinese for dramatic effect, since it is spoken and understood by very few

people in the United States, and notoriously difficult to learn as a second language. I have

decided to switch the example to Russian, for variety. Russian speakers should feel free to

substitute their own example – an English room, for example, or an Arabic one.) Inside the

room, a person receives pieces of paper through one window and passes out pieces of paper

through another window. The pieces of paper have symbols in Russian written on them.

The Russian room, in essence, is an input–output system, with symbols as inputs and

outputs. The way the input–output system works is determined by a huge instruction

manual that tells the person in the room which pieces of paper to pass out depending on

which pieces of paper he receives.

The instruction manual is essentially just a way of pairing input symbols with output

symbols. It is not written in Russian and can be understood and followed by someone who

knows no Russian. All that the person needs to be able to do is to identify Russian symbols

in some sort of syntactic way – according to their shape, for example. This is enough for

them to be able to find the right output for each input – where the right output is taken to

be the output dictated by the instruction manual.

The Russian room is admittedly a little far-fetched, but it does seem to be perfectly

possible. Now, Searle continues, imagine two further things. Imagine, first, that the

instruction manual has been written in such a way that the inputs are all questions in

Russian and the outputs are all appropriate answers to those questions. To all intents and

purposes, therefore, the Russian room is answering questions in Russian. Now imagine

that the person in the room does not in fact know any Russian. All he is doing is

following the instructions in the instruction manual (which is written in English) to

match an outgoing piece of paper (the answer) to an incoming piece of paper (the

question).

The situation is illustrated in Figure 4.3. What the Russian room shows, according to

Searle, is that it is perfectly possible for there to be syntactic symbol manipulation without

any form of intelligence or understanding. The Russian room as a whole does not under-

stand Russian, because the man inside the room does not understand Russian.

The Russian room seems to be set up in accordance with the physical symbol system

hypothesis. After all, the person in the Russian room is manipulating symbols according to

their formal/syntactic properties. Moreover, the Russian room has been set up so that it

produces the right output for every input. In the terms we used in the last section, the

syntactic manipulation of the symbols preserves their semantic properties. The semantic

properties of the input symbols are their meanings – i.e., certain questions. The semantic

properties of the output symbols are answers to those questions. So, as long as the person in

The Russian Room Argument and the Turing Test 115



the Russian room follows the instructions correctly, the semantic relations between input

and output will be preserved. And yet, Searle argues, the Russian room does not understand

Russian. How can it understand Russian, given that the person in the room does not

understand Russian?

But if the Russian room does not understand Russian then, Searle argues, there is no

sense in which it is behaving intelligently. To someone outside the room it might look as

Take a squiggle-
squiggle sign from 
tray number 1 and 
put it next to a 
squoggle-squoggle
sign from basket 
number 2.

“I’m just manipulating
squiggles and squoggles

but I don’t really understand what
they mean. This rule book written in

English tells me what to do. I get
the squiggle squiggle from here,

look at the book, and then
move the squoggle

squoggle over there.”

Кто или что бы ни было в эта 
комната является 
интеллектуальным Русский спикер

[Whoever or whatever is in 
that room is an intelligent 
Russian speaker!]

Figure 4.3 Inside and outside the Russian room.
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if there is intelligent behavior going on. The machine does, after all, respond to the

questions it is asked with answers that make sense. But this is just an illusion of intelli-

gence. The Russian room cannot be behaving intelligently if it does not understand

Russian. And so, it is a counterexample to the physical symbol system hypothesis – or

so Searle argues.

In fact, Searle also thinks that the Russian room argument reveals a fundamental

problem with the so-called Turing Test, proposed by Alan Turing in 1950 as a criterion

for whether a machine was displaying real intelligence. Turing’s basic idea is that, if an

observer is communicating with a machine and cannot tell the difference between it and a

human being, then that would show that the computer was genuinely intelligent. You

might imagine, for example, that a judge is communicating simultaneously with the

machine and with a human being via a computer screen and keyboards, but cannot tell

which is which, however complicated and lengthy the interaction. For Turing, then, a

machine that responds in exactly the way that a human being responds thereby counts as

intelligent.

Exercise 4.8 Explain in your own words why the Russian room argument is an objection to

taking the Turing Test to reveal genuine intelligence.

Responding to the Russian Room Argument

Many people have suggested that there is a crucial equivocation in the argument. The

physical symbol system hypothesis is a hypothesis about how cognitive systems work. It

says, in effect, that any cognitive system capable of intelligent behavior will be a physical

symbol system – and hence that it will operate by manipulating physical symbol structures.

The crucial step in the Russian room argument, however, is not a claim about the system as

a whole. It is a claim about part of the system, namely, the person inside the room who is

reading and applying the instruction manual. The force of the claim that the Russian room

as a whole does not understand Russian rests almost entirely on the fact that this person

does not understand Russian.

According to the systems reply, the Russian room argument is simply based on a mistake

about where the intelligence is supposed to be located. Supporters of the systems reply hold

that the Russian room as a whole understands Russian and is displaying intelligent behav-

ior, even though the person inside the room does not understand Russian.

Searle himself is not very impressed by the systems reply. He has a clever objection.

Instead of imagining yourself in the Russian room, imagine the Russian room inside

you! If you memorize the instruction manual then, Searle says, you have effectively

internalized the Russian room. Of course, it ’s hard to imagine that anyone could have

a good enough memory to do this, but there are no reasons to think that it is in

principle impossible. But, Searle argues, internalizing the Russian room in this way is

not enough to turn you from someone who does not understand Russian into some-

one who does. After all, what you’ve memorized is not Russian, but just a complex set
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of rules for mapping some symbols you don’t understand onto other symbols you

don’t understand.

Exercise 4.9 How might a defender of the systems reply to Searle’s response?

Another common way of responding to the Russian room argument is the robot reply.

According to the robot reply, Searle is right about the Russian room not understanding

Russian, but wrong about the reasons why. The problem with the Russian room has

nothing to do with some sort of impassable gap between syntax and semantics. The

problem, rather, is that it is embodied agents who understand Russian, not disembodied

cognitive systems into which pieces of paper enter and from which other pieces of paper

come out. Understanding Russian is a complex ability that manifests itself in how an agent

interacts with other people and with items in the world.

The ability to understand Russian involves, at a minimum, being able to carry out

instructions given in Russian, to coordinate with other Russian speakers, to read Russian

characters, and to carry on a conversation. In order to build a machine that could do all this

we would need to embed the Russian room in a robot, providing it with some analog of

sensory organs, vocal apparatus, and limbs. If the Russian room had all this and could

behave in the way that a Russian-speaker behaves then, a supporter of the robot reply

would say, there is no reason to deny that the system understands Russian and is behaving

intelligently.

Again, Searle is unconvinced. For him the gulf between syntax and semantics can’t

simply be overcome by turning the Russian room into a Russian robot. An embodied

Russian room might indeed stop when it “sees” the Russian word for “stop.” But this

would simply be something it has learned to do. It no more understands what the character

means than a laboratory pigeon that has been trained not to peck at a piece of card with the

same character on it. Interacting with the environment is not the same as understanding it.

Even if the Russian robot does and says all the right things, this does not show that it

understands Russian. The basic problem still remains, as far as Searle is concerned: simply

manipulating symbols cannot create meaning and unless the symbols are meaningful

to the Russian room there is no relation between what it does and what a “real” Russian-

speaker might do.

Exercise 4.10 Explain the robot reply in your own words and assess Searle’s response to it.

The Russian room argument raises fundamental questions about the nature of

intelligence and, relatedly, of what counts as genuine thinking. Searle often presents

it as an objection to what is often called the project of strong AI – this is the project of

building machines that are genuinely intelligent (as opposed to the project of weak AI,

which simply aims to build machines that do the things that human beings can do).

And this is what many supporters (and critics) of the Russian room argument have

focused on.

It is important to realize, though, that, if the argument is sound, it strikes at the

very possibility of the physical symbol system hypothesis. What Searle is trying to show
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is that there must be more to genuine thinking than simply manipulating symbols

according to rules, whereas the physical symbol system hypothesis says that that is all

that thinking is. For that reason, the Russian room argument is a very useful tool for

thinking about some of the broader, theoretical issues that the physical symbol system

hypothesis raises.

Summary

This chapter has looked at the physical symbol system hypothesis, originally proposed by Newell

and Simon. This hypothesis says that thinking consists in manipulating symbol structures according

to rules. After introducing the physical symbol system hypothesis, we considered Jerry Fodor’s

suggestion that these symbol structures are sentences in an internal language of thought. The

chapter ended with the Russian room argument, an objection to the basic idea of the physical

symbol system hypothesis.

Checklist

The physical symbol system hypothesis states that a physical symbol system has the

necessary and sufficient means for general intelligent action. In more detail:

(1) The symbols are physical patterns.

(2) Physical symbols can be combined to form complex symbol structures.

(3) Physical symbol systems contain processes for manipulating complex symbol structures.

(4) The processes for manipulating complex symbol structures can be represented by symbols and

structures within the system.

(5) Problems are solved by generating and modifying symbol structures until a solution structure is

reached.

The physical symbol system hypothesis is very programmatic. Fodor’s language of

thought hypothesis is one way of turning the physical symbol system hypothesis into a

concrete proposal about how the mind works.

(1) The language of thought hypothesis is grounded in intentional realism. Psychological states such

as belief and desire are real physical entities. These entities are sentences in the language of

thought.

(2) The hypothesis offers a way of explaining causation by content (i.e., how physical representations

can have causal effects in the world as a function of how they represent the world).

(3) Fodor suggests that we understand the relation between sentences in the language of

thought and their contents on the model of the relation between syntax and semantics in a formal

system.

(4) The syntax of the language of thought tracks its semantics because the language of thought is a

formal language with analogs of the formal properties of soundness and completeness.
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The Russian room argument is a thought experiment directed against the idea that the

rule-governed manipulation of symbols is sufficient to produce intelligent behavior.

(1) The person in the Russian room is manipulating symbols according to their formal/syntactic

properties without any understanding of Russian.

(2) According to the systems reply, the Russian room argument misses the point, because the real

question is whether the system as a whole understands Russian, not whether the person in the

room understands Russian.

(3) According to the robot reply, the Russian room does not understand Russian. But this is not

because of any uncrossable gap between syntax and semantics. Rather, it is because the Russian

room has no opportunity to interact with the environment and other people.

Further Reading

The paper by Newell and Simon discussed in Section 4.1 is reprinted in a number of places,

including Boden 1990b and Bermúdez 2006. A good introduction to the general ideas behind the

physical symbol system hypothesis in the context of artificial intelligence is Haugeland 1985,

particularly chapter 2, and Haugeland 1997, chapter 4. See also chapters 1–3 of Johnson-Laird

1988, chapters 4 and 5 of Copeland 1993, chapter 2 of Dawson 1998, and the Encyclopedia of

Cognitive Science entry on symbol systems (Nadel 2005). Russell and Norvig 2009 is the third

edition of a popular AI textbook. Also see Poole and Mackworth 2010, Warwick 2012, and

Proudfoot and Copeland’s chapter on artificial intelligence in The Oxford Handbook of

Philosophy of Cognitive Science (Margolis, Samuels, and Stich 2012).

Fodor 1975 and 1987 are classic expositions of the language of thought approach from a

philosophical perspective. For Fodor’s most recent views, see Fodor 2008. For a psychologist’s

perspective, see Pylyshyn’s book Computation and Cognition (1984) and his earlier target article in

Behavioral and Brain Sciences (1980). More recent philosophical discussions of the language of

thought can be found in Schneider 2011 and Schneider and Katz 2012. The Encyclopedia of

Cognitive Science has an entry on the topic, as does the Stanford Encyclopedia of Philosophy. For a

general, philosophical discussion of the computational picture of the mind, Crane 2003 and

Sterelny 1990 are recommended. Block 1995a explores the metaphor of the mind as the software

of the brain. Fodor’s argument for the language of thought hypothesis is closely tied to important

research in mathematical logic and the theory of computation. Rogers 1971 is an accessible

overview. For general introductions to philosophical debates about mental causation and the more

general mind–body problem, see Heil 2004 and Searle 2004.

Searle presents what I am calling the Russian room argument and he termed the Chinese room

argument in his “Minds, brains, and programs” (1980). This was originally published in the journal

Behavioral and Brain Sciences with extensive commentary from many cognitive scientists.

A related problem, the symbol-grounding problem, is introduced and discussed in Harnad 1990

(available in the online resources). Margaret Boden’s article “Escaping from the Chinese room”

(1990a), reprinted in Heil 2004, is a good place to start in thinking about the argument. In

January 1990, the periodical Scientific American devoted a special issue to the tenth anniversary
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of Searle’s argument. Churchland and Churchland 1990 was one of the contributions, arguing

that while the argument is effective against classical AI, it leaves artificial neural networks

untouched. Preston and Bishop 2002 is a collection of articles dedicated to the Russian room

argument, covering the principal lines of response. The entry on the Chinese room argument

in the online Stanford Encyclopedia of Philosophy is comprehensive and has a very full

bibliography.
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Overview

This chapter looks at a very different approach to information processing. Neural networks are

based on an idealized model of how neurons work. The chapter begins in Section 5.1 by reviewing

some of the motivations for neurally inspired models of information processing and looking at how

the individual units in neural networks compare to biological neurons

The simplest artificial neural networks are single-layer networks. These are explored in

Section 5.2. We will see that any digital computer can be simulated by a suitably chained together

set of single-layer networks. However, they are limited in what they can learn.

Overcoming those limits requires moving from single-layer networks to multilayer networks,

which are capable of learning through the backpropagation of error. In Section 5.3 we look at the

backpropagation algorithm used to train multilayer networks. Finally, Section 5.4 summarizes the

key features of information processing in multilayer artificial neural networks, explaining key

differences between neural networks and physical symbol systems.
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5.1 Neurally Inspired Models of Information Processing

We saw in Part I (particularly in Chapter 3) that detailed knowledge of how the brain works

has increased dramatically in recent years. Neuroimaging techniques, such as fMRI and

PET, have allowed neuroscientists to begin establishing large-scale correlations between

types of cognitive functioning and specific brain areas. Combining this with the infor-

mation available from studies of brain-damaged patients allows cognitive scientists to build

up a functional map of the brain.

Other techniques have made it possible to study brain activity (in nonhuman animals,

from monkeys to sea-slugs) at the level of the single neuron. Microelectrodes can be used to

record electrical activity both inside a single neuron and in the vicinity of that neuron.

Recording from inside neurons allows a picture to be built up of the different types of input

to the neuron, both excitatory and inhibitory, and of the mechanisms that modulate

output signals.

But none of these techniques offers direct insight into how information is processed in

the brain. PET and fMRI are good sources of information about which brain areas are

involved in particular cognitive tasks, but they do not tell us anything about how those

cognitive tasks are actually carried out. We need to know not just what particular regions of

the brain do, but how they do it. Nor will this information come from single-neuron

recordings. We may well find out from single-neuron recordings in monkeys that particular

types of neuron in particular areas of the brain respond very selectively to a narrow range of

visual stimuli, but we have as yet no idea how to scale this up into an account of how

vision works.

The brain is an extraordinarily complicated set of interlocking and interconnected

circuits. The most fundamental feature of the brain is its connectivity and the crucial

question in understanding the brain is how distributed patterns of activation across

populations of neurons can give rise to perception, memory, sensorimotor control, and

high-level cognition. But we have (as yet) limited tools for directly studying how popula-

tions of neurons work.

Since we do not have the equipment and resources to study populations of neurons

directly, many researchers have developed techniques for studying populations of neurons

indirectly. The new strategy is to construct models that approximate populations of

neurons in certain important respects. These are called neural network models, or artificial

neural networks.

There are many different types of neural network models and many different ways of

using them. The focus in computational neuroscience is on modeling biological neurons and

populations of neurons. Computational neuroscientists start from what is known about

the biology of the brain and then construct models by abstracting away from some

biological details while preserving others. Connectionist modelers often pay less attention

to the constraints of biology. They tend to start with generic models. Their aim is to show

how those models can be modified and adapted to simulate and reproduce well-

documented psychological phenomena, such as the patterns of development that children
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go through when they acquire language, or the way in which cognitive processes break

down in brain-damaged patients.

For our purposes here, the differences between computational neuroscientists and

connectionist modelers are less important than what they have in common. Neural

network models are distinctive in how they store information, how they retrieve it, and

how they process it. And even those models that are not biologically driven remain

neurally inspired. This neurally inspired way of thinking about information processing is

the focus of this chapter.

Neurons and Network Units

Neural networks are made up of individual units loosely based on biological neurons.

There are many different types of neuron in the nervous system, but they all share a

common basic structure. Each neuron is a cell and so has a cell body (a soma) containing

a nucleus. There are many root-like extensions from the cell body. These are called

neurites. There are two different types of neurite. Each neuron has many dendrites and a

single axon. The dendrites are thinner than the axon and form what looks like a little

bush (as illustrated in Figure 5.1). The axon itself eventually splits into a number of

branches, each terminating in a little endbulb that comes close to the dendrites of another

neuron.

Neurons receive signals from other neurons. A typical neuron might receive inputs from

10,000 neurons, but the number is as great as 50,000 for some neurons in the brain area

called the hippocampus. These signals are received through the dendrites, which can be

thought of as the receiving end of the neuron. A sending neuron transmits a signal along

its axon to a synapse, which is the site where the end of an axon branch comes close to a

dendrite or the cell body of another neuron. When the signal from the sending (or

presynaptic) neuron reaches the synapse, it generates an electrical signal in the dendrites

of the receiving (or postsynaptic) neuron.

The basic activity of a neuron is to fire an electrical impulse along its axon. The single

most important fact about the firing of neurons is that it depends upon activity at the

synapses. Some of the signals reaching the neuron’s dendrites promote firing and others

Nucleus

Cell body

Axon

Dendrites

Synapse

Dendrites

Figure 5.1 Schematic illustration of a typical neuron.
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inhibit it. These are called excitatory and inhibitory synapses, respectively. If the sum of

excitatory and inhibitory synapses exceeds the threshold of the neuron then the neuron

will fire.

Neural networks are built up of interconnected populations of units that share some of

the generic characteristics of biological neurons. Figure 5.2 illustrates a typical network

unit. There are n inputs, corresponding to synaptic connections to presynaptic neurons.

Signals from the presynaptic neurons might be excitatory or inhibitory. This is captured in

the model by assigning a numerical weight W

a real number between 1 and –

Multiplying each input by its weight indicates the strength of the signal at each

synapse. Adding all these individual activation levels together gives the total input to

the unit, corresponding to the total signal reaching the nucleus of the neuron. This

is represented using standard mathematical format in Figure 5.2. (A reminder – Σ is

the symbol for summation [repeated addition]). The N above the summation sign

indicates that there are N many things to add together. Each of the things added

together is the product of I

input exceeds the threshold (T) then the neuron “fires” and transmits an output

signal.

The one thing that remains to be specified is the strength of the output signal. We know

that the unit will transmit a signal if the total input exceeds its designated threshold, but

we do not yet know what that signal is. For this we need to specify an activation function – a

function that assigns an output signal on the basis of the total input. Neural network

designers standardly choose from several different types of activation function. Some of

these are illustrated in Figure 5.3.

The simplest activation function is a linear function on which the output signal

increases in direct proportion to the total input. (Linear functions are so called because

they take a straight line when drawn on a graph.) The threshold linear function is a slight
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Figure 5.2 An artificial neuron.
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modification of this. This function yields no output signal until the total input reaches the

threshold – and then the strength of the output signal increases proportionately to the

total input. There is also a binary threshold function, which effectively operates like an on/

off switch. It either yields zero output (when the input signal is below threshold) or

maximum output (when the input signal is at or above threshold).

The threshold functions are intended to reflect a very basic property of biological

neurons, which is that they only fire when their total input is suitably strong. The binary

threshold activation function models neurons that either fire or don’t fire, while the

threshold linear function models neurons whose firing rate increases in proportion to the

total input once the threshold has been reached.

The sigmoid function is a very commonly used nonlinear activation function. This

reflects some of the properties of real neurons in that it effectively has a threshold below

which total input has little effect and a ceiling above which the output remains more or less

constant despite increases in total input. The ceiling corresponds to the maximum firing

rate of the neuron. Between the threshold and the ceiling the strength of the output signal

is roughly proportionate to the total input and so looks linear. But the function as a whole

is nonlinear and drawn with a curve.

(a) Linear

(d) Binary threshold

(b) Threshold linear

(c) Sigmoid

total input
i

total input
i

total input
i

total input
i

-5 0 5

1.0

0.0

1.0

0.0
-5 0 5

Figure 5.3 Four different activation functions. Each one fixes a neuron’s activation level as a

function of the total input to the neuron. (Adapted from McLeod, Plunkett, and Rolls 1998)
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We see, then, how each individual unit in a network functions. The next step is to see

how they can be used to process information. We will start out by looking at the simplest

neural networks. These are single-layer networks.

5.2 Single-Layer Networks and Boolean Functions

The first neural networks were studied in the 1940s and 1950s, pioneered by the neurosci-

entist Warren McCulloch and the logician Walter Pitts. They were known as single-layer

networks. To see what single-layer networks can do (and what they can’t do) we need so

start with a quick refresher on mapping functions.

The basic idea of a function should be familiar, even if the terminology may not be.

Addition is a function. Given two numbers as inputs, the addition function yields a third

number as output. The output is the sum of the two inputs. Multiplication is also a

function. Here the third number is the product of the two inputs.

Some helpful terminology. Suppose that we have a set of items. We can call that a domain.

Let there be another set of items, which we can call the range. A mapping functionmaps each

itemfromthedomainontoexactly one itemfromthe range.Thedefining featureof a function

is that no item in the domain gets mapped tomore than one item in the range. Functions are

single-valued. The operationof taking square roots, for example, is not a function (at leastwhen

negative numbers are included), since every positive number has two square roots.

Exercise 5.1 Give another example of an arithmetical operation that counts as a function. And

another example of an operation that is not a function.

Figure 5.4 gives an example of a mapping function. The arrows indicate which item in

the domain is mapped to each item in the range. It is perfectly acceptable for two or more

items in the domain to be mapped to a single item in the range (as is the case with A

A

Let’s turn now tomapping functions of a very special kind. These are functions with a range

consisting of two items, one corresponding to TRUE and the other corresponding to FALSE.We

A 1

A 2

A 3

A 4

B1

B2

B3

B4

Domain Range

Figure 5.4 Illustration of a mapping function. A mapping function maps each item in its domain

to exactly one item in its range.
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can think about such functions as ways of classifying objects in the domain of the function.

Imagine that the domain of the function contains all the natural numbers and the range of the

function contains two items corresponding to TRUE and FALSE. Then we can identify any

subsetweplease of thenatural numbers bymapping themembers of that subset onto TRUEand

all the others onto FALSE. If the subset that the functionmaps onto TRUE contains all and only

the even numbers, for example, thenwehave away of picking out the set of the evennumbers.

Now, we have all the machinery we need to introduce the so-called binary Boolean

functions. These functions all have the same range as our even number function, namely,

the set consisting of the two truth values TRUE and FALSE. Instead of having numbers in

the domain, however, the domain of these functions is made up of pairs of truth values.

There are four different possible pairs of truth values. These pairs form the domain of the

binary Boolean functions. The range, as with all Boolean functions, is given by the set

{TRUE, FALSE}, as illustrated below:

DOMAIN RANGE

FALSE, FALSE

FALSE, TRUE FALSE

TRUE, FALSE TRUE

TRUE, TRUE

Each binary Boolean function assigns either TRUE or FALSE to each pair of truth values.

You can think of a binary Boolean function as a way of showing how to fix the truth

value of a complex sentence built up from two simpler sentences on the basis of the truth

values of those simpler sentences. Some Boolean functions should be very familiar. There is

a binary Boolean function standardly known as AND, for example. AND maps the pair

{TRUE, TRUE} to TRUE and maps all other pairs of truth values to FALSE. To put it another

way, if you are given a sentence A and a sentence B, then the only circumstance in which it

is true to claim A AND B is the circumstance in which both A and B have the value TRUE.

Similarly, OR is the name of the Boolean function that maps the pair {FALSE, FALSE} to

FALSE, and the other three pairs to TRUE. Alternatively, if you are given sentences A and

B then the only circumstance in which it is false to claim A OR B is the circumstance in

which both A and B have the value FALSE.

It is important that the OR function assigns TRUE to the pair {TRUE, TRUE}, so that A OR

B is true in the case where both A and B are true. As we shall see, there is a Boolean function

that behaves just like OR, except that it assigns FALSE to {TRUE, TRUE}. This is the so-called

XOR function (an abbreviation of exclusive-OR). XOR cannot be represented by a single-

layer network. We will look at this in more detail in Section 5.2.

We can represent these functions using what logicians call a truth table. The truth table

for AND tells us how the truth value of A AND B varies according to the truth value of A and

B, respectively (or, as a logician would say, as a function of the truth values of A and B).
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A B A AND B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

Exercise 5.2 Give a truth table for the Boolean function OR.

Now, back to neural networks. The key point (first pointed out by McCulloch and Pitts)

is that we can use very simple neural networks to represent some of the binary Boolean

functions. The first step is to represent Boolean functions using numbers (since we need

numbers as inputs and outputs for the arithmetic of the activation function to work). This

is easy. We can represent TRUE by the number 1 and FALSE by 0, as is standard in logic and

computer science. If we design our network unit so that it only takes 1 and 0 as inputs and

only produces 1 and 0 as outputs, then it will be computing a Boolean function.

It is easy to see how we design our network unit to take only 0 and 1 as input. But how

do we design it to produce only 0 and 1 as output?

Think back to the activation functions depicted in Figure 5.3, particularly binary thresh-

old activation functions. These functions output 0 until the threshold is reached. Once the

threshold is reached they output 1, irrespective of how the input increases. So, to represent

a particular Boolean function, we need to set the weights and the threshold so that the

network mimics the truth table for that Boolean function. A network that represents AND,

for example, will have to output a 0 whenever the input is either (0, 0), (0, 1), or (1, 0). And

it will have to output a 1 whenever the input is (1, 1).

The trick in getting a network to do this is to set the weights and the threshold

appropriately. Look at Figure 5.5. If we set the weights at 1 for both inputs and the

threshold at 2, then the unit will only fire when both inputs are 1. If both inputs are 1 then

the total input is (I W W ± 1) + (1 ± 1) = 2, which is the threshold. Since

the network is using a binary threshold activation function (as described in the previous

paragraph), in this case the output will be 1. If either input is a 0 (or both are) then the

threshold will not be met, and so the output is 0. If we take 1 to represent TRUE and 0 to

represent FALSE, then this network represents the AND function. It functions as what

computer scientists call an AND-gate.

Figure 5.5 A single-layer network representing the Boolean function AND.
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Exercise 5.3 Show how a network unit can represent OR and hence function as an OR-gate.

There are Boolean functions besides the binary ones. In fact, there are n-ary Boolean

functions for every natural number n (including 0). But cognitive scientists are generally

only interested in one nonbinary Boolean function. This is the unary function NOT. As its

name suggests, NOT A is true if A is false and NOT A is false if A is true. Again, this is easily

represented by a single network unit, as illustrated in Figure 5.6. The trick is to set the

weights and threshold to get the desired result.

Exercise 5.4 Explain why the network unit in Figure 5.6 represents the unary Boolean

function NOT.

We see, then, single-layer networks can achieve a lot. As any computer scientist knows,

modern digital computers are in the last analysis just incredibly complicated systems of

AND-gates, OR-gates, and NOT-gates. So, by chaining together individual network units

into a network we can do anything that can be done by a digital computer. (This is why

I earlier said that cognitive scientists are generally only interested in one nonbinary

Boolean function. AND, NOT, OR, and a little ingenuity are enough to simulate any n-

ary Boolean function, no matter how complicated.)

There is something missing, however. As we have seen, the key to getting single units to

represent Boolean functions such as NOT and OR lies in setting the weights and the

threshold. But this raises some fundamental questions: How do the weights get set? How

does the threshold get set? Is there any room for learning?

Learning in Single-Layer Networks: The Perceptron
Convergence Rule

In 1949 Donald Hebb published The Organization of Behavior in which he speculated about

how learning might take place in the brain. His basic idea (the idea behind what we now

call Hebbian learning) is that learning is at bottom an associative process. He famously

wrote:

When an axon of a cell A is near enough to excite cell B or repeatedly or persistently

takes part in firing it, some growth or metabolic change takes place in both cells such

that A’s efficiency, as one of the cells firing B, is increased.

Figure 5.6 A single-layer network representing the Boolean function NOT.
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Hebbian learning proceeds by synaptic modification. If A is a presynaptic neuron and B a

postsynaptic neuron, then every time that B fires after A fires increases the probability that

B will fire after A fires (this is what Hebb means by an increase in A’s efficiency).

In slogan form, Hebbian learning is the principle that neurons that fire together, wire

together. It has proved to be a very useful tool in modeling basic pattern recognition and

pattern completion, as well as featuring in more complicated learning algorithms, such as

the competitive learning algorithm discussed in Section 5.3.

Hebb was speculating about real neurons, not artificial ones. And, although there is

strong evidence that Hebbian learning does take place in the nervous system, the first

significant research on learning in artificial neural networks modified the Hebbian model

very significantly. In the 1950s Frank Rosenblatt studied learning in single-layer networks.

In an influential article in 1958 he called these networks perceptrons.

Rosenblatt was looking for a learning rule that would allow a network with random

weights and a random threshold to settle on a configuration of weights and thresholds that

would allow it to solve a given problem. Solving a given problem means producing the

right output for every input.

The learning in this case is supervised learning. This means that, whenever the network

produces the wrong output for a given input, it is told that it has made an error. The process

of learning (for a neural network) is the process of changing the weights and/or the

threshold in response to error. Learning is successful when these changes in the weights

and/or the threshold converge upon a configuration that always produces the desired

output for a given input.

Rosenblatt called his learning rule the perceptron convergence rule. The perceptron conver-

gence rule has some similarities with Hebbian learning. Like Hebbian learning it relies on

the basic principle that changes in weight are determined solely by what happens locally –

that is, by what happens at the input and what happens at the output. But, unlike Hebbian

learning, it is a supervised algorithm – it requires feedback about incorrect solutions to the

problem the network is trying to solve.

The perceptron convergence rule is basically a tool for reducing error. We (as supervisors

of the network) know which mapping function we are training the network to compute.

So, we can measure the discrepancy between the output that the network actually produces

and the output that it is supposed to produce. We can label that discrepancy δ (small delta).

It will be a number – the number reached by subtracting the actual output from the correct

output. So:

δ = INTENDED OUTPUT – ACTUAL OUTPUT

Suppose, for example, that we are trying to produce a network that functions as an AND-

gate. This means that, when the inputs each have value 1, the desired output is 1 (since

A AND B is true in the case where A is true and B is true). If the output that the network

actually produces is 0, then δ = 1. If, in contrast, the desired output is 0 and the actual

output is 1, then δ = –1.

It is standard when constructing neural networks to specify a learning rate. This is a

constant number between 0 and 1 that determines how large the changes are on each trial.
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We can label the learning rate constant ε (epsilon). The perceptron convergence rule is a

very simple function of δ and ε.

If we use the symbol Δ (big delta) to indicate the adjustment that we will make after each

application of the rule, then the perceptron convergence rule can be written like this

(remembering that T is the threshold; I W

the ith input):

ΔT ¼ ²ε± δ
ΔW i ¼ ε ± δ ± I i

There are multiple adjustments here, one for the threshold and one for each of the weights.

Let’s look at how the equations work to see how the network learns by making these

adjustments.

Suppose δ is positive. This means that our network has undershot (because it means that

the correct output is greater than the actual output). Since the actual output is weaker than

required we can make two sorts of changes in order to close the gap between the required

output and the actual output. We can decrease the threshold and we can increase the

weights. This is exactly what the perceptron convergence rule tells us to do. We end up

decreasing the threshold because when δ is positive, ²ε ± δ is negative. And we end up

increasing the weights, because ε ± δ ± I

Exercise 5.5 How does the perceptron convergence rule work when the network overshoots?

Here is an example. Let’s consider the very simple single-layer network depicted in

Figure 5.7. This network only takes one input and so we only have one weight to worry

about. We can take the starting weight to be –0.6 and the threshold to be 0.2. Let’s set our

learning constant at 0.5 and use the perceptron learning rule to train this network to

function as a NOT-gate.

Suppose that we input a 1 into this network (where, as before, 1 represents TRUE and

0 represents FALSE). The total input is 1 ± ²0.6 = ²0.6. This is below the threshold of 0.2

and so the output signal is 0. Since this is the desired output we have δ = 0 and so no

learning takes place (since ΔT = ²ε ± δ = ²0.5 ± 0 = 0, and ΔW also comes out as 0). But if

we input a 0 then we get a total input of 0 ± ²0.6 = 0. Since this is also below the threshold

the output signal is 0. But this is not the desired output, which is 1. So, we can calculate

Figure 5.7 The starting configuration for a single-layer network being trained to function as a

NOT-gate through the perceptron convergence rule. It begins with a weight of ²0.6 and a

threshold of 0.2.
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δ = 1 ² 0 = 1. This gives ΔT =²0.5 ± 1 = –0.5 and ΔW = 0.5 ± 1 ± 0 = 0. This changes the
threshold (to –0.3 and leaves the weight unchanged.

This single application of the perceptron convergence rule is enough to turn our single-

unit network with randomly chosen weight and threshold into a NOT-gate. If we input a

1 into the network then the total input is 1± –0.6 = –0.6, which is below the threshold. So

the output signal is 0, as required. And if we input a 0 into the network then the total input

is 0± –0.6 = 0, which is above the threshold of – 0.3. So, the output signal is 1, as required.

In both cases we have δ = 0 and so no further learning takes place. The network has

converged on a solution.

The perceptron convergence rule is very powerful. In fact, it can be proved (although we

shan’t do so here) that applying the rule is guaranteed to converge on a solution in every

case that a solution exists. But can we say anything about when there is no solution – and

hence about which functions a network can learn to compute via the perceptron conver-

gence rule and which will forever remain beyond its reach? It turns out that there is a

relatively simple way of classifying the functions that a network can learn to compute by

applying the perceptron convergence rule. We will see how to do this next.

Linear Separability and the Limits of
Perceptron Convergence

We have seen how our single-layer networks can function as AND-gates, OR-gates, and

NOT-gates. And we have also seen an example of how the perceptron convergence rule can

be used to train a network with a randomly assigned weight and a randomly assigned

threshold to function as a NOT-gate. It turns out that these functions share a common

property and that that common property is shared by every function that a single-layer

network can be trained to compute. This gives us a very straightforward way of classifying

what networks can learn to do via the perceptron convergence rule.

It is easiest to see what this property is if we use a graph to visualize the “space” of

possible inputs into one of the gates. Figure 5.8 shows how to do this for two functions. The

function on the left is the AND function. On the graph a black dot is used to mark the

inputs for which the AND-gate outputs a 1, and a white dot marks the inputs that get a 0.

There are four possible inputs and, as expected, only one black dot (corresponding to the

case where both inputs have the value TRUE). The graph for AND shows that we can use a

straight line to separate out the inputs that receive the value 1 from the inputs that receive

the value 0. Functions that have this property are said to be linearly separable.

Exercise 5.6 Draw a graph to show that OR is linearly separable.

Clearly, though, the function on the right is not linearly separable. This is the exclusive-

OR function (standardly written as XOR). The OR function that we have been looking at up

to now has the value TRUE except when both inputs have the value FALSE. So, A OR B has

the value TRUE evenwhen both A and B have the value TRUE. This is not how the word“or”

often works in English. If I am offered a choice between A or B it often means that I have to
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choose one, but not both. This way of thinking about “or” is captured by the function XOR.

A XOR B has the value TRUE only when exactly one of A and B has the value TRUE.

No straight line separates the black dots from the white dots in the graph of XOR. This

means that XOR is not linearly separable. It turns out, moreover, that XOR cannot be

represented by a single-layer network. This is easier to see if we represent XOR in a truth

table. The table shows what the output is for each of the four different possible pairs of

inputs – as usual, 1 is the TRUE input and 0 is the FALSE input.

I I OUTPUT

0 0 0

0 1 1

1 0 1

1 1 0

Now, think about howwewould need to set the weights and the threshold to get a single-

layer network to generate the right outputs.Weneed thenetwork to output a 1when thefirst

input is 0 and the second input is 1. This means thatW

must be such that 1± W

such that 1± W

so that it exceeds the threshold, then it is certain that adding them together will exceed the

threshold. In symbols, ifW

So, XOR fails to be linearly separable and is also not computable by a single-layer

network. In fact, there is a general principle here. The class of Boolean functions that can

be computed by a single-unit network is precisely the class of linearly separable functions.

0,1

0,0 1,0
AND

0,1

0,0 1,0
XOR

1,11,1

Figure 5.8 Graphical representations of the AND and XOR (exclusive-OR) functions, showing the

linear separability of AND. Each of the four circles marked on the graph represents a possible

combination of input truth values (as fixed by its coordinates). The circle is colored black just if the

function outputs 1 at that point.
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2 (the weight for the second input)

2 is greater than the threshold. Likewise, for the case where the first

input is1and the second input is 0. In order to get this to come out right we need W1 to be

1 is greater than the threshold. But now, with the weights set like that, it is

inevitable that the networkwill output a 1when both inputs are 1 – if each input is weighted

1 > T and W2 > T, then it is inevitable thatW1 + W2 > T.



This was proved by Marvin Minsky and Seymour Papert in a very influential book entitled

Perceptrons that was published in 1969.

But why does this matter? It is not too hard to construct an artificial network that will

compute XOR. Figure 5.9 shows a network that will do the job. It is what is known as a

multilayer network. Up to now we have been looking at single-layer networks. The units in

single-layer networks receive inputs directly. Multilayer networks, in contrast, contain

units that only receive inputs indirectly. These are known as hidden units. The only inputs

they can receive are outputs from other units.

Exercise 5.7 There are two binary Boolean functions that fail to be linearly separable. The

second is the reverse of XOR, which assigns 1 where XOR assigns 0 and 0 where XOR assigns 1.

Construct a network that computes this function.

The presence of hidden units is what allows the network in Figure 5.9 to compute the

XOR function. The reason a single-layer network cannot compute XOR is that it can only

assign one weight to each input. This is why a network that outputs 1 when the first input

is 1 and outputs 1 when the second input is 1 has to output 1 when both inputs are 1. This

problem goes away when a network has hidden units. Each input now has its own unit and

each input unit is connected to two different output units. This means that two different

weights can now be assigned to each input.

Multilayered networks can compute any computable function – not just the linearly

separable ones. But what stopped researchers in their tracks in 1969 was the fact that

they had no idea how to train multilayered networks. The great breakthrough in neural

network modeling came with the discovery of an algorithm for training multilayer

networks.

Exercise 5.8 Why can’t the perceptual convergence rule be applied to multilayer networks?

+1

Input 
units

Hidden 
units

Output 
unit

-1

-1

+1

+1

+1

h1

h2

Threshold
T = 1.0

T

T

T

Figure 5.9 A multilayer network representing the XOR (exclusive-OR) function. Note that, unlike

the single-layer perceptrons that we have been considering up to now, this network has three

layers. One of these layers is a hidden layer – it receives inputs only indirectly from other units.

(Adapted from McLeod, Plunkett, and Rolls 1998)
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5.3 Multilayer Networks

Let’s start with some basic facts about multilayer networks. Multilayer networks are organ-

ized into different layers. Each layer contains a number of units, typically not connected to

each other. All networks contain an input layer, an output layer, and a number (possibly 0)

of what are called hidden layers. The hidden layers are so called because they are connected

only to other network units. They are hidden from the “outside world.”

Information enters the network via the input layer. Each unit in the input layer receives

a certain degree of activation, which we can represent numerically. Each unit in the input

layer is connected to each unit in the next layer. Each connection has a weight,

again representable numerically. The most common neural networks are feedforward net-

works. As the name suggests, activation spreads forward through the network. There is no

spread of activation between units in a given layer, or backward from one layer to the

previous layer.

The spread of activation through a multilayer network is illustrated in Figure 5.10,

which illustrates a sample hidden unit in a simple network with only one layer of hidden

units. (Note that the diagram follows the rather confusing notation standard in the neural

network literature.)

The usual practice is to label a particular unit with the subscript i. So, we write the name

of the unit as u

u

u

As we see in the fi

to u Multiplying each by the appropriate weight and adding the resulting numbers all

represent the activation of each unit u

Total input ¼
XN

j¼1
wij aj

We then apply the activation function to the total input. This will determine the unit’s

activity level, which we can write down as a figure the activation function is a

sigmoid function. This means that a

Once the threshold is reached, a

then levels out once the unit’

Once we understand how a single unit works it is straightforward to see how the whole

network functions. We can think of it as a series of n time steps where n is the number of

layers (including the input, hidden, and output layers). In the first time step every unit in

the input layer is activated. We can write this down as an ordered series of numbers – what

mathematicians call a vector. At step 2 the network calculates the activation level of each

Multilayer Networks 137

i. If we want to talk about an arbitrary unit from an earlier layer connected to

i, we label that earlier unit with the subscript j and write the name of the unit as u

make things as diffi

j. Just to

cult as possible, when we label the weight of the connection from uj to

i we use the subscript ij, with the label of the later unit coming first. So, w

the connection that runs from u

ij is the weight of

j to ui.

gure, our sample unit ui integrates the activation it receives from all the

units in the earlier layer to which it is connected. Assume that there are n units connected

i.

together gives the total input to the unit – which we can write as total input (i). If we

j by aj, then we can write down this sum as

i. In the

i is low when total input (i) is below the threshold.

i increases more or less proportionally to total input. It

s ceiling is reached.



unit in the first hidden layer, by the process described in the previous paragraph. This gives

another vector. And so on until at step n the network has calculated the activation level of

each unit in the output layer to give the output vector.

The Backpropagation Algorithm

So that’s how activation spreads through a multilayer network. But where do the weights

come from? How does the network learn to solve a particular problem, whether it is

computing the XOR function or distinguishing between mines and rocks (as in the

network we looked at in Section 3.3).

Input Output

j

i

Integrate input
from previous

layer

Transform total
input to activity

level (a
i
)

Transmit activity
level to units in next

layer

Total input
i

Total
input

i

a
i

a
i

a
j

W
ij

Figure 5.10 The computational operation performed by a unit in a connectionist model. Upper:

General structure of a connectionist network. Lower: A closer look at unit i. Its operation can be

broken into three steps: (1) Integrate all the inputs from the previous layer to create a total input.

(2) Use an activation function to convert the total input to an activity level. (3) Output the activity

level as input to units in the next layer. (Adapted from McLeod, Plunkett, and Rolls 1998)
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This brings us to the backpropagation algorithm. The basic idea is that error is propagated

backward through the network from the output units to the hidden units. Recall the basic

problem for training multilayer networks. We know what the target activation levels are for

the output units. We know, for example, that a network computing XOR should output

0 when the inputs are both 1. And we know that a mine/rock detector should output (1, 0)

when its inputs correspond to a mine and (0, 1) when its inputs correspond to a rock.

Given this we can calculate the degree of error in a given output unit. But since we don’t

know what the target activation levels are for the hidden units we have no way of

calculating the degree of error in a given hidden unit. And that seems to mean that we

have no way of knowing how to adjust the weights of connections to hidden units.

The backpropagation algorithm solves this problem by finding a way of calculating the

error in the activation level of a given hidden unit even though there is no explicit

activation level for that unit. The basic idea is that each hidden unit connected to an

output unit bears a degree of “responsibility” for the error of that output unit. If, for

example, the activation level of an output unit is too low, then this can only be because

insufficient activation has spread from the hidden units to which it is connected. This gives

us a way of assigning error to each hidden unit. In essence, the error level of a hidden unit is

a function of the extent to which it contributes to the error of the output unit to which it is

connected. Once this degree of responsibility, and consequent error level, is assigned to a

hidden unit, it then becomes possible to modify the weights between that unit and the

output unit to decrease the error.

This method can be applied to as many levels of hidden units as there are in the

network. We begin with the error levels of the output units and then assign error levels

to the first layer of hidden units. This allows the network both to modify the weights

between the first layer of hidden units and the output units and to assign error levels to the

next layer of hidden units. And so the error is propagated back down through the network

until the input layer is reached. It is very important to remember that activation and error

travel through the network in opposite directions. Activation spreads forward through the

network (at least in feed forward networks), while error is propagated backward.

How Biologically Plausible Are Neural Networks?

There are certainly some obvious and striking dissimilarities at many different levels

between neural networks and the brain. For example –

■ Whereas neural network units are all homogeneous, there are many different types of

neuron in the brain – twelve different types in the neocortex alone.

■ Brains are nowhere near as massively parallel as typical neural networks. Each cortical

neuron is connected to a roughly constant number of neurons (approximately 3 percent

of the neurons in the surrounding square millimeter of cortex).

■ The scale of connectionist networks seems wrong. Each cortical column consists of a

population of highly interconnected neurons with similar response properties. A single

cortical column cuts vertically across a range of horizontal layers (laminae) and can contain
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as many as 200,000 neurons – whereas even the most complicated artificial neural

networks rarely have more than 5,000 units.

There are even more striking differences when it comes to learning and training:

■ Neural networks learn by modifying connection weights and even in relatively simple

networks this requires hundreds and thousands of training cycles. (But still – the

principal reason why training a network takes so long is that networks tend to start with a

random assignment of weights and this is not something one would expect to find in a

well-designed brain.)

■ There is no evidence that anything like the backpropagation of error takes place in the brain.

Researchers have failed to find any neural connections that transmit information about error.

■ Most neural networks are supervised networks and require detailed information about the

extent of the error at each output unit. But very little biological learning seems to involve

this sort of detailed feedback.

It is important to keep these arguments in perspective, however. There are learning algo-

rithms that are more biologically plausible than backpropagation, such as local algorithms.

In local learning algorithms an individual unit’s weight changes directly as a function of

the inputs to and outputs from that unit. Thinking about it in terms of neurons, the

information for changing the weight of a synaptic connection is directly available to the

presynaptic axon and the postsynaptic dendrite. The Hebbian learning rule that we briefly

looked at earlier is an example of a local learning rule. Neural network modelers think of it

as much more biologically plausible than the backpropagation rule.

Local learning algorithms, are often used in networks that learn through unsupervised

learning. The backpropagation algorithm requires very detailed feedback, as well as a way

of spreading an error signal back through the network. Competitive networks, in contrast, do

not require any feedback at all. There is no fixed target for each output unit and there is no

external teacher. What the network does is classify a set of inputs in such a way that each

output unit fires in response to a particular set of input patterns.

This works because of inhibitory connections between the output units, in contrast to

standard feedforward networks, where there are typically no connections between units in

a single layer. These inhibitory connections allow the output units to compete with each

other. Each output unit inhibits the other output units in proportion to its firing rate. So,

the unit that fires the most will win the competition. Only the winning unit is “rewarded”

(by having its weights increased). This increase in weights makes it more likely to win the

competition when the input is similar. The end result is that each output ends up firing in

response to a set of similar inputs.

Competitive networks are particularly good at classification tasks, which require

detecting similarities between different input patterns. They have been used, for example,

to model visual pattern recognition. One of the amazing properties of the visual system is

its ability to recognize the same object from many different angles and perspectives. There

are several competitive network models of this type of position-invariant object recognition,

including the VisNet model of visual processing developed by Edmund Rolls and
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T. T. Milward. VisNet is designed to reproduce the flow of information through the early

visual system (as sketched in Section 3.2). It has different layers intended to correspond to

the stages from area V1 to the inferior temporal cortex. Each layer is itself a competitive

network, learning by a version of the Hebbian rule.

In short, there are many ways of developing the basic insights in neural network models

that are more biologically plausible than standard feedforward networks that require

detailed feedback and a mechanism for the backpropagation of error. And in any case,

neural network models should be judged by the same criteria as other mathematical

models. In particular, the results of the network need to mesh reasonably closely with

what is known about the large-scale behavior of the cognitive ability being modeled. So, for

example, if what is being modeled is the ability to master some linguistic rule (such as the

rule governing the formation of the past tense), one would expect a good model to display

a learning profile similar to that generally seen in the average language learner. In Chap-

ter 10 we will look at two examples of models that do seem very promising in this regard.

First, though, we need to make explicit some of the general features of the neural network

approach to information processing.

5.4 Information Processing in Neural Networks: Key Features

Stepping back from details of specific networks and learning rules, all neural networks share

some very general characteristics that distinguish them from physical symbol systems.

Distributed Representations

According to the physical symbol system hypothesis, representations are distinct and

identifiable components in a cognitive system. This need not be true in artificial neural

networks. There are some networks for which it holds. These are called localist networks.

What distinguishes localist networks is that each unit codes for a specific feature in the

input data. We might think of the individual units as analogs of concepts. They are

activated when the input has the feature encoded that the unit encodes. The individual

units work as simple feature-detectors. There are many interesting things that can be done

with localist networks. But the artificial neural networks that researchers have tended to

find most exciting have typically been distributed networks rather than localist ones.

Certainly, all the networks that we have looked at in this chapter have been distributed.

The information that a distributed network carries is not located in any specific place. Or

rather, it is distributed across many specific places. A network stores information in its

pattern of weights. It is the particular pattern of weights in the network that determines

what output it produces in response to particular inputs. A network learns by adjusting its

weights until it settles into a particular configuration – hopefully the configuration that

produces the right output! The upshot of the learning algorithm is that the network’s

“knowledge” is distributed across the relative strengths of the connections between

different units.
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No Clear Distinction between Information
Storage and Information Processing

According to the physical symbol system hypothesis all information processing is rule-

governed symbol manipulation. If information is carried by symbolic formulas in the

language of thought, for example, then information processing is a matter of transform-

ing those formulas by rules that operate only on the formal features of the formulas. In

the last analysis, information is carried by physical structures and the rules are rules for

manipulating those symbol structures. This all depends upon the idea that we can

distinguish within a cognitive system between the representations on which the rules

operate and the rules themselves – just as, within a logical system such as the propos-

itional or predicate calculus, we can distinguish between symbolic formulas and the rules

that we use to build those symbolic formulas up into more complex formulas and to

transform them.

Exercise 5.9 Look back at Box 4.1 and Figure 4.2 and explain how and why the distinction

between rules and representations is central to the physical symbol system and language of

thought hypotheses.

Consider how AND might be computed according to the physical symbol system

hypothesis. A system for computing AND might take as its basic alphabet the symbol

0 and the symbol 1. The inputs to the system would be pairs of symbols and the system

would have built into it rules to ensure that when the input is a pair of 1s, the system outputs

a 1, while in all other cases, it outputs a 0. What might such a rule look like?

Well, we might think about the system along the lines of a Turing machine (as illus-

trated in Section 1.2). In this case the inputs would be symbols written on two squares of a

tape. Assume that the head starts just to the left of the input squares. The following

program will work.

Step 1 Move one square R.

Step 2 If square contains “1,” then delete it, move one square R and go to Step 6.

Step 3 If square contains “0,” then delete it, move one square R and go to Step 4.

Step 4 Delete what is in square and write “0.”

Step 5 Stop.

Step 6 If square contains “0,” then stop.

Step 7 If square contains “1,” then stop.

The tape ends up with a 1 on it only when the tape started out with two 1s on it. If the tape

starts out with one or more 0s on it then it will stop with a 0. The final state of the tape is
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reached by transforming the initial symbol structure by formal rules, exactly as required by

the physical symbol system hypothesis. And the rules are completely distinct from the

symbols on which they operate.

Exercise 5.10 Write a program that will compute the function XOR.

There is no comparable distinction between rules and representations in artificial

neural networks. The only rules are those governing the spread of activation values

forward through the network and those governing how weights adjust. Look again at

the network computing XOR and think about how it works. If we input two 1s into the

network (corresponding to a pair of propositions, both of which are true), then the

information processing in the network proceeds in two basic stages. In the first-stage

activation spreads from the input layer to the hidden layer and both hidden units fire. In

the second stage, activation spreads from the hidden units to the output unit and the

output unit fires.

The only rules that are exploited are, first, the rule for calculating the total input to a

unit and, second, the rule that determines whether a unit will fire for a given total input

(i.e., the activation function). But these are exactly the same rules that would be

activated if the network were computing AND or OR. These “updating rules” apply to

all feedforward networks of this type. What distinguishes the networks are their differ-

ent patterns of weights. But a pattern of weights is not a rule, or an algorithm of any

kind. Rather a particular pattern of weights is what results from the application of one

rule (the learning algorithm). And it is one of the inputs into another rule (the updating

algorithm).

The Ability to Learn from “Experience”

Of course, talk of neural networks learning from experience should not be taken too

seriously. Neural networks do not experience anything. They just receive different types

of input. But the important point is that they are not fixed in how they respond to inputs.

This is because they can change their weights. We have looked at several different ways in

which this can take place – at several different forms of learning algorithm. Supervised

learning algorithms, such as the backpropagation algorithm, change the weights in direct

response to explicit feedback about how the network’s actual output diverges from

intended output. But networks can also engage in unsupervised learning (as we saw when

we looked briefly at competitive networks). Here the network imposes its own order on the

inputs it receives, typically by means of a local learning algorithm, such as some form of

Hebbian learning.

This capacity to learn makes neural networks a powerful tool for modeling cognitive

abilities that develop and evolve over time. We will look at examples of how this can be

done later on, particularly in Chapters 10 and 12.
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Summary

This chapter has explored a way of thinking about information processing very different from

the physical symbol system hypothesis discussed in Chapter 4. Connectionist neural networks

are constructed from individual units that function as highly idealized neurons. We looked at

two very different types of network. In the first part of the chapter we looked at single-layer

networks and saw how they can learn via the perceptron convergence rule. Unfortunately,

single-layer networks are limited in the functions that they can compute. It has been known for

a long time that multilayer networks built up from single-layer networks can compute any

function that can be computed by a digital computer, but it was not until the emergence of the

backpropagation learning algorithm that it became possible to train multilayer neural

networks. The chapter ended by considering the biological plausibility of neural networks and

summarizing some of the crucial differences between artificial neural networks and physical

symbol systems.

Checklist

Neurally Inspired Information Processing

(1) A fundamental question in thinking about how the brain processes information is how the

activities of large populations of neurons give rise to complex sensory and cognitive abilities.

(2) Existing techniques for directly studying the brain do not allow us to study what happens inside

populations of neurons.

(3) Computational neuroscientists use mathematical models (neural networks) to study populations of

neurons.

(4) These neural networks are made up of units loosely based on biological neurons. Each unit is

connected to other units so that activation levels can be transmitted between them as a function of

the strength of the connection.

Single-Layer Networks

(1) We can use single-layer networks to compute some Boolean functions, in particular AND, OR,

and NOT.

(2) Any digital computer can be simulated by a network of single-layer networks appropriately chained

together.

(3) Single-layer networks can learn by adjusting their weights to minimize their degree of error (the δ

signal) according to the perceptron convergence rule.

(4) Single-layer networks can only learn to compute functions that are linearly separable.
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Multilayer Networks

(1) Multilayer networks have hidden units that are neither input units nor output units.

(2) The presence of hidden units enables multilayer networks to learn to compute functions that

cannot be learned by single-layer networks (including functions that are not linearly separable).

(3) The backpropagation learning algorithm for multilayer networks adjusts the weights of hidden

units as a function of how “responsible” they are for the error at the output units.

Biological Plausibility

(1) Neural network units are much more homogeneous than real neurons. And real neural networks

are likely to be both much larger and less parallel than network models.

(2) The backpropagation algorithm is not very biologically plausible. There is no evidence that error is

propagated backward in the brain. And nature rarely provides feedback as detailed as the

algorithm requires.

(3) However, there are other learning algorithms. Competitive networks using Hebbian learning do

not require explicit feedback, and there is evidence for local learning in the brain.

Information Processing in Neural Networks

(1) Representation in neural networks is distributed across the units and weights, rather than

being encoded in discrete symbol structures, as in the physical symbol system hypothesis.

(2) There are no clear distinctions to be drawn within neural networks either between information

storage and information processing or between rules and representations.

(3) Neural networks are capable of sophisticated forms of learning, which makes them particularly

suitable for modeling how cognitive abilities are acquired and how they evolve.

Further Reading

The Handbook of Brain Theory and Neural Networks (Arbib 2003) is the most comprehensive

single-volume source for different types of computational neuroscience and neural computing,

together with entries on neuroanatomy and many other “neural topics.” It contains useful

introductory material and “road maps.” Stein and Stoodley 2006 and Trappenberg 2010 are user-

friendly introductions to neuroscience and computational neuroscience, respectively. Arbib 1987

surveys the theoretical issues in modeling the brain from a mathematical perspective. Glass 2016 is

a neuroscience-inspired cognitive psychology textbook.

The classic sources for connectionism are the two volumes of Rumelhart, McClelland, and

the PDP Research Group 1986. Churchland and Sejnowski 1992 is an early manifesto for

computational neuroscience. See also Bechtel and Abrahamsen 2002 and the relevant chapters

of Dawson 1998. There are useful article-length presentations in Rumelhart 1989 (reprinted in
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Haugeland 1997) and Churchland 1990b (reprinted in Cummins and Cummins 2000). McLeod,

Plunkett, and Rolls 1998 covers both the theory of neural networks and their modeling

applications, including the VisNet model of visual processing originally presented in Rolls and

Milward 2000. The first chapter is reprinted in Bermúdez 2006. Dawson 2005 is a “hands-on”

introduction to connectionist modeling. For a survey of applications of connectionist networks

in cognitive psychology, see Houghton 2005. See also Thomas and McClelland’s chapter on

connectionist modeling in Sun 2008. A more recent discussion of connectionism can be found

in McClelland et al. 2010, with commentary and target articles from others in the same issue.

Connectionism went out of fashion for a few years but has recently seen a resurgence in the

context of deep machine learning. See the Further Reading section in Chapter 12 for

references.

The biological plausibility of artificial neural networks has been much discussed, and

researchers have developed a number of learning algorithms that are less biologically implausible

than the backpropagation algorithm. O’Reilly and Munakata 2000 is a good place to start in

finding out about these. Warwick 2012 is a more recent alternative. See Bowers 2009 and Plaut

and McClelland 2010 for an exchange concerning biological plausibility as well as local and

distributed representations. The perceptron convergence learning rule discussed in Section 8.2 is

also known as the delta rule. It is very closely related to the model of associative learning in

classical (Pavlovian) conditioning independently developed by the psychologists Robert Rescorla

and Allen Wagner in the 1970s. For more on reward learning and the delta rule, see chapter 6 of

Trappenberg 2010. The Encyclopedia of Cognitive Science also has an entry on perceptrons (Nadel

2005). For more on McCullough and Pitts, see chapter 2 of Arbib 1987 and Piccinini 2004, as well

as Schlatter and Aizawa 2008.

One of the key distinguishing features of neural networks is that their “knowledge” is

distributed across units and weights. This raises a number of issues, both practical and

theoretical. Rogers and McClelland 2004 develops a distributed model of semantic knowledge.

Philosophers have explored the relation between distributed representations and standard

ways of thinking about propositional attitudes and mental causation. Some of the points of

contact are explored in Clark 1989, 1993. Macdonald and Macdonald 1995 collects some key

papers, including an important debate between Smolensky and Fodor about the structure of

connectionist networks. Other collections include Davis 1993 and Ramsey, Stich, and

Rumelhart 1991.

Not all neural networks are distributed. There are also localist networks. Whereas in

distributed networks, it is typically not possible to say what job an individual unit is doing

(and when it is possible, it usually requires knowing a lot about what other units are doing),

units in localist networks can be interpreted independently of the states of other units. For a

robust defense of the localist approach, see Page 2000 and the papers in Grainger and Jacobs

1998.

One topic not discussed in the text is the computational power of artificial neural networks. It is

sometimes suggested that connectionist networks are computationally equivalent to digital

computers (in virtue of being able to compute all Turing-computable functions), which might be

146 Neural Networks and Distributed Information Processing



taken to indicate that connectionist networks are simply implementations of digital computers. The

implementation thesis is canvassed both by opponents of connectionism (Fodor and Pylyshyn

1988) and by leading connectionist modelers (Hinton, McClelland, and Rumelhart 1986).

Siegelmann and Sontag 1991 present a neural network that can simulate a universal Turing

machine. For skeptical discussion, see Hadley 2000.
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Overview

We have been exploring the basic idea that cognition is information processing. We have looked at

different ways of thinking about information processing – the physical symbol system hypothesis

and the neural networks model. These two approaches are both committed to thinking of

cognition as essentially a process of transforming representational states that carry information

about the agent and about the environment, although they think about these representational

states in very different ways.

This chapter introduces a very different way of modeling cognitive abilities. First, we look at

how some cognitive scientists have proposed using the mathematical and conceptual tools of

dynamical systems theory to model cognitive skills and abilities. As we’ll see, dynamical systems

models differ in certain fundamental respects from the information-processing models we have

been looking at. Then in Section 6.2 we explore two examples of how dynamical systems models

can shed light on child development.

6.1 Cognitive Science and Dynamical Systems

The dynamical systems hypothesis calls for cognitive science to be freed from its depend-

ence on ideas of representation and computation. Its fundamental idea is that we can
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understand how organisms respond to the environment and orient themselves in it

without assuming that there are internal cognitive systems that carry out specific

information-processing tasks. The basic currency of cognitive science is not the

information-carrying representation, and nor are computations and algorithms the best

way to think about how cognition unfolds.

Instead, the proposal is that cognitive scientists need to use the tools of dynamical

systems theory in order to understand how perceivers and agents are embedded in their

environments. Dynamical systems have been studied in physics and other natural sciences

for many centuries. What’s new is the idea that we can understand how cognition works by

thinking of cognitive agents as dynamical systems.

What Are Dynamical Systems?

In the broadest sense, a dynamical system is any system that evolves over time in a law-

governed way. The solar system is a dynamical system. So are you and I. So is a dripping

tap. And so, for that matter, are Turing machines and artificial neural networks. What

marks out the dynamical systems hypothesis is the idea that cognitive systems should be

studied with the tools of dynamical modeling.

Dynamical modeling exploits powerful mathematical machinery to understand how

certain types of natural phenomena evolve over time. Newtonian mechanics is perhaps the

most famous example of dynamical modeling, but all dynamical models have certain basic

features.

Dynamical models typically track the evolving relationship between a relatively small

number of quantities that change over time. They do this using calculus and differential or

difference equations. Difference equations allow us to model the evolution of a system that

changes in discrete steps. So, for example, we might use difference equations to model how

the size of a biological population changes over time – each step being a year, for example.

Differential equations, in contrast, allow us to model quantities that change continuously,

such as the acceleration of a falling object.

One of the basic theoretical ideas in dynamical systems modeling is the idea of a state

space. The state space of a dynamical system is a geometric way of thinking about all the

possible states that a system can be in. A state space has as many different dimensions as it

has quantities that vary independently of each other – as many different dimensions as

there are degrees of freedom in the system, in other words. Any state of the dynamical

system will involve the system having a particular value in each dimension. And so, we can

uniquely identify the state of the system in terms of a particular set of coordinates in the

system’s state space.

You can think about the state space of an idealized swinging pendulum, for example, as

having two dimensions – one corresponding to its angle of displacement from the vertical

and one corresponding to its angular velocity. So, every possible state that the pendulum

can be in can be represented by a pair of numbers, which in turn correspond to a point in a

two-dimensional space.
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If we add another dimension to the state space to represent time then we can

start thinking about the evolution of the pendulum in terms of a trajectory through

state space. A trajectory through state space is simply a sequence of points in the

multidimensional space. This sequence of points represents the successive states of the

pendulum.

One of the basic aims of dynamical systems modeling is to write equations governing

the evolution of the system – that is, governing the different possible trajectories that the

system can take through state space, depending upon where the system starts (the system’s

initial conditions).

Let’s go back to our idealized simple pendulum, a suspended weight swinging from side

to side in an environment with no friction. This is a dynamical system. Its initial condition

is its position at the moment it is released and allowed to start swinging. The state space is

the different possible positions that the weight can take at a given time. At any given

moment, the position of the weight is fixed solely by the pendulum’s amplitude (its angle

of displacement from its equilibrium position, which is hanging straight down) and the

length of time it has been swinging.

So, we can represent the swinging of the pendulum as a trajectory through state space

over time. This is represented diagrammatically in Figure 6.1. The state space is two-

dimensional, because there are two dimensions of variation. The first dimension of vari-

ation is its angular displacement from the vertical equilibrium position. And the second

dimension is time, which is represented vertically. So, each state of this simple dynamical

system is a position-time pair – a point in the two-dimensional state space.

t

+P-P

Plot Space

Real Space

Figure 6.1 The trajectory through state space of an idealized swinging pendulum. The

pendulum’s position is its displacement from the vertical (positive to the right and negative to the

left). The time axis goes vertically downward.
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If we remove some of the simplifying assumptions (by taking friction into account, for

example), then our dynamical system becomes more complicated. Since what friction does

is decrease velocity through energy loss, we now need to add a third dimension to the state

space. This third dimension represents velocity. So now, each state of the system is a

position-time-velocity triple – a point in the three-dimensional state space. (See Figure 6.2.)

Exercise 6.1 Explain in your own words the key differences between Figures 6.1 and 6.2.

These two examples illustrate how the evolution of a physical system can be viewed as a

trajectory through a multidimensional state space. However, neither is sufficiently detailed

to allow us to model the evolution of the system.

In order to model the evolution of the system we need to be able to write equations that

describe how a value on one dimension (say, its angle of displacement from the vertical) is

determined by values on the other dimensions (say, velocity and time). There is no

equation that will fix the position of a swinging pendulum as a function simply of velocity

and time (even if we remove the effects of friction). More information is required.

In order to be able to work out where the pendulum will be at a particular moment, we

need to take into account two different forces. We need to factor in both the force with

which the pendulum is moving and the force of gravity (which acts as a restoring force,

counteracting the initial force). When the restoring force exceeds the initial force, then the

pendulum starts moving back to equilibrium. And so, it continues to oscillate indefinitely

Plot Space

Real Space

-P

+v

-v

+P

t

Figure 6.2 The state space of a swinging pendulum in a three-dimensional state space. This state

space includes a dimension representing velocity, in order to capture energy loss and decreased

velocity due to friction.
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(in a system where there is no friction). And in order to measure the effects of those forces,

you also need to take into account the length of the pendulum.

If we have all this information, then we can start to think about how to write an

equation for determining the angle of displacement as a function of these other quantities.

It turns out that, with some important simplifying assumptions, the following equation

will work when the maximum angle of displacement is relatively small (and there is no

friction):

A ¼ AMAX sin √ g=lð Þt

where A is the angular displacement; A

the gravitational acceleration; and l

The equations get much more complicated when friction is brought back into the

picture, and the maximum angle of displacement gets larger. But this should be enough

to illustrate the basic idea of a dynamical system and the evolution of a dynamical system

can be modeled as a trajectory through state space.

Still, you may reasonably ask, what has this got to do with cognitive science?

The Dynamical Systems Hypothesis: Cognitive
Science without Representations?

To see the relevance of dynamical systems to cognitive science, consider a famous

illustration introduced by the philosopher Tim Van Gelder, one of the early proponents

of the dynamical systems hypothesis. Van Gelder introduces us to two ways of thinking

about an engineering problem whose solution was a vital step in the Industrial Revolu-

tion. One way of solving the problem is structurally very similar to the information-

processing approach to thinking about how the mind solves problems. The other way,

which is how the problem was actually solved, reveals the power of the dynamical

systems approach.

For Van Gelder, cognitive scientists are essentially trying to reverse engineer the

mind – they are trying to work out how the mind is configured to solve the problems

that it deals with. Cognitive scientists have tended to tackle this reverse engineering

problem in a particular way – by assuming that the mind is an information-processing

machine. But what Van Gelder tries to show is that this approach is neither the only

way nor the best way. He does this by looking at an example from engineering itself –

the Watt governor.

The development of the steam engine is very closely associated with the name of the

Scottish engineer James Watt. The first steam engines were only capable of a reciprocating

pumping motion. But Watt designed a gearing system to allow steam engines to drive a

flywheel and hence to produce rotational power. This gearing system made it possible to

use steam engines for weaving, grinding, and other industrial applications.

Unfortunately, there was still a problem. The type of applications for which steam power

was needed required the power source to be as uniform as possible. This, in turn, required
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the speed of the flywheel to be as constant as possible. But this was very hard to achieve

because the speed of the flywheel depended upon two things that were constantly

changing – the pressure of the steam driving the engine and the amount of work that

the engine was doing. What was needed (and what Watt ended up inventing) was a

governor that would regulate the speed of the flywheel.

The problem is clear, but how could it be solved? Van Gelder identifies one possible

approach. This approach employs the sort of task analysis that is typical of traditional

cognitive science, and that is often presented in a boxes-and-arrows diagram. It breaks

the task of regulating the speed of the flywheel into a series of subtasks, assumes that

each of those subtasks is carried out in separate stages, and works out an algorithm for

solving the problem by successively performing the subtasks. This approach gives what

Van Gelder terms the computational governor, following something like the following

algorithm:

1 Measure the speed of the flywheel

2 Compare the actual speed S

3 If S

4 6

(b) calculate the required alteration in steam pressure

(c) calculate the throttle adjustment that will achieve that alteration

5 Make the throttle adjustment

6 Return to step 1

The computational governor has certain features that should be very familiar by now. It is:

Representational. It cannot work without some way of representing the speed of the

flywheel, the pressure of the steam, and the state of the throttle valve.

Computational. The algorithm is essentially a process for comparing, transforming, and

manipulating representations of speed, steam pressure, and so on.

Sequential. It works in a discrete, step-by-step manner.

Decomposable (or, as Van Gelder puts it, homuncular). We can think of it as made up of

distinct and semi-autonomous sub-systems, each responsible for a particular sub-task – the

speed measurement system, the steam measurement system, the throttle adjustment

system, and so on.

So, the computational governor is an application of some of the basic principles that

cognitive scientists use to understand how the mind works. The basic fact of the matter,

though, is that Watt went about things in a very different way.

The Watt governor, which Watt developed using basic principles already exploited in

windmills, has none of the key features of the computational governor. It does not involve
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representations and hence, as a consequence, cannot be computational. It is not sequen-

tial. And it is not decomposable. It is in fact, as Van Gelder points out, a dynamical system

that is best studied using the tools of dynamical systems modeling.

The Watt governor is illustrated at the top of Figure 6.3. The flywheel is right at the

bottom. Coming up from the flywheel is a rotating spindle. The spindle rotates at a speed

determined by the speed of the flywheel. It has two metal balls attached to it. As the

speed of the spindle’s rotation increases, centrifugal force drives the metal balls upward.

As the speed decreases the balls drop down. Watt’s key idea was to connect the arms from

which the metal balls are suspended directly to the throttle valve for the steam engine.

Raising the arms closes down the throttle valve, while the valve is opened up when the

arms fall.

This ingenious arrangement allows the governor to regulate the speed by compensating

almost instantaneously whether the speed of the flywheel is overshooting or undershoot-

ing. The lower part of Figure 6.3 illustrates the feedback loop.

Valve
(opening)

Spindle arms
(angle)

Flywheel
(speed)

Steam pressure

+
_

+
_ +

_

Spindle
turning

Linkage
mechanism 

resistance

Figure 6.3 Illustration of the Watt governor, together with a schematic representation of how

it works.
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Van Gelder stresses four very important features of the Watt governor:

Dynamical system: The best way to understand the Watt governor is through the tools of

dynamical systems theory. It is relatively straightforward to write a differential equation

that will specify how the arm angle changes as a function of the engine speed. The system

is a typical dynamical system because these equations have a small number of variables.

Time-sensitivity: The Watt governor is all about timing. It works because fluctuations in the

speed of the flywheel are almost instantly followed by variation in the arm angle. The

differential equations governing the evolution of the system track the relation over time

between flywheel speed and arm angle.

Coupling: TheWatt governor works because the arm angle, the throttle valve, and the speed

of the flywheel are all interdependent. The arm angle is a parameter fixing the speed of the

flywheel. But the speed of the flywheel is equally a parameter fixing the angle of the arm.

The system as a whole is what dynamical systems theorists call a coupled system

characterized by feedback loops.

Attractor dynamics: For any given engine speed there is an equilibrium arm angle – an angle

that will allow the engine to continue at that speed. We can think about this equilibrium

arm angle as an attractor – a point in state space to which many different trajectories will

converge. (See Box 6.1.)

So, the Watt governor can be characterized using the tools of dynamical systems theory.

It is a coupled system that displays a simple version of attractor dynamics, because it

contains basins of attraction (as described in Box 6.1). Unlike the computational governor,

it does not involve any representation, computation, or decomposable subsystems. Finally,

the Watt governor works in real time. The adjustments are made almost instantaneously,

exactly as required. It is very hard to see how the computational governor would

achieve this.

Exercise 6.2 Explain in your own words the principal differences between the computational

governor and the Watt governor.

But again, what has this got to do with the mind? It is not news, after all, that steam

engines are not cognitive systems.

Van Gelder and other supporters of the dynamical systems hypothesis argue that the

same basic tools that explain how the Watt governor works can be used to illuminate the

workings of the mind. But the issue is not just about explanation. Dynamical systems

theorists think that the explanations work because they track the basic design principles of

the mind. They think not only that the mind is a dynamical system, but also that when we

look at the relation between the organism and the environment what we see is a coupled

system. The organism–environment complex is a system whose behavior evolves as a

function of a small number of variables.
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Certainly, the real test of this idea must come in concrete applications. The plausibility

of the dynamical systems hypothesis cannot rest solely on an analogy between the mind

and a steam engine –however suggestive that analogy may be. Some very exciting work has

been done by cognitive scientists on giving dynamical systems models of particular cogni-

tive abilities. Much of the most interesting research has been done on motor skills and

BOX 6.1 Basins of Attraction in State Space

A particular dynamical system evolves through time along a trajectory in state space. The particular

trajectory that it takes is a function of its initial conditions. So, the trajectory of the swinging

pendulum, for example, is typically determined by its initial amplitude, together with the way that

allowances for friction are built into the system.

But not all regions of state space are created equal. There are some regions of state space to

which many different trajectories converge. These are called basins of attraction. In the case of a

swinging pendulum subject to friction, there is a region of state space to which all trajectories

converge – this is the point at which the pendulum is stationary, its equilibrium point.

Many dynamical systems have a number of basins of attraction – these are the nonlinear

dynamical systems. There is a two-dimensional example in Figure B6.1.
The figure illustrates a range of different possible trajectories. The trajectories are marked by

arrows, with the length of the arrow indicating the speed (and hence the strength of the

attraction). The state space has two basins of attraction.

Figure B6.1
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motor learning. Dynamical systems theory has proved a powerful tool for understanding

how children learn to walk, for example. The next section looks at two applications of the

dynamical systems approach to child development.

6.2 Applying Dynamical Systems: Two Examples from
Child Development

Dynamical models are extremely time-sensitive, able to track the evolution of a system

over time in very fine detail. This suggests that one profitable area to apply them is in

BOX 6.1 (cont.)

Figure B6.2 gives a different way of representing basins of attraction, in terms of what is often

called an energy landscape. This gives a different way of visualizing how a system evolves through

state space.
The undulating surface represents the space of possible trajectories. The two basins of

attraction are represented by depressions in the surface. Since dynamical systems evolve toward

a reduction in energy, trajectories will typically “roll” downhill until they end up in one of the

two basins of attraction. In fact, in this particular dynamical system any trajectory must begin on

one side of the dividing “ridge” or the other – and so will end up in the corresponding basin

of attraction.

Figure B6.2
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studying how children learn new skills and abilities. In this section we look at two concrete

examples of how episodes in child development can be modeled by dynamical systems

theory.

Two Ways of Thinking about Motor Control

Our first example comes from motor control. It has to do with how infants learn to walk.

There is a direct analogy with the example of the Watt governor. The dominant approach

to understanding how movements are planned and executed is the computational model

of motor control. This is the motor control equivalent of the computational governor. The

dynamical systems approach offers an alternative – a noncomputational way of thinking

about how movements are organized and how motor skills emerge.

To illustrate the computational model of motor control, consider the movement of

reaching for an object. According to the computational model, planning this movement

has to begin with the central nervous system calculating both the position of the target

object and the position of the hand. These calculations will involve input both from vision

and from different types of proprioception (such as sensors in the arm detecting muscle

flexion). Planning the movement requires calculating a trajectory from the starting pos-

ition to the goal position. It also involves computing a sequence of muscle movements that

will take the hand along that trajectory. Finally, executing the movement requires calcu-

lating changes in the muscle movements to accommodate visual and proprioceptive

feedback.

This gives a multistage sequence of computations that seems tailor-made for algorithmic

information processing. Figure 6.4 illustrates a computational model of motor control that

fits this general description. It is a standard information-processing diagram – which is

often called a boxological diagram (because it is drawn in terms of boxes and arrows, with

different cognitive tasks assigned to different boxes, and the arrows indicating the flow of

information processing).

But the psychologists Esther Thelen and Linda Smith have argued that walking is not a

planned activity in the way that many cognitive scientists have assumed, following the

computational approach to motor control. It does not involve a specific set of motor

commands that “program” the limbs to behave in certain ways. Rather, the activity of

walking emerges out of complex interactions between muscles, limbs, and different fea-

tures of the environment. There are many feedback loops controlling limb movements as a

function of variation in both body and environment.

Concrete evidence for Thelen and Smith’s position comes from studies on how infants

learn to walk. Most normal infants start learning to walk toward the end of their first year –

at around 11 months. For the first few months infants are capable of making stepping

movements. They stop making these movements during the so-called nonstepping

window. The movements obviously reappear when the infant starts walking.

The traditional explanation for this U-shaped developmental trajectory is that the

infant’s initial stepping movements are purely reflexive. They disappear during the
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nonstepping window because the cortex is maturing enough to inhibit reflex responses –

but is not sufficiently mature to bring stepping movements under voluntary control.

Thelen and Smith came up with a range of experimental evidence challenging this

approach. They discovered that stepping movements could be artificially induced in

infants by manipulating features of the environment. So, for example, infants in the

nonstepping window will make stepping movements when they are suspended in warm

water. Stepping during the nonstepping window can also be induced by placing the infants

on a treadmill. The treadmill increases leg strength by moving the leg backward and

exploiting its spring-like properties. Stepping movements can also be inhibited before the

start of the nonstepping window – attaching even small weights to the baby’s ankles will

do the trick.

These possibilities for manipulating infant stepping movements present considerable

difficulties for the cortical maturation approach – since they show that stepping move-

ments vary independently of how the cortex has developed. And they also point toward a

Expected costs and 
rewards of the task

Motor 
command

Body +
environment

Feedback control
policy

Forward model

Time delay

Sensory system

State estimation

State
change

Predicted
sensory
consequences

Belief about state of body 
and environment

Measured sensory 
consequences

Cost to go

Figure 6.4 An example of the computational approach to motor control. This model incorporates

both forward mechanisms (i.e., mechanisms that make predictions about the sensory

consequences of particular movements) and comparator mechanisms (i.e., mechanisms that

compare the predictions with actual sensory feedback). (Adapted from Shadmehr and Krakauer

2008)
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dynamical systems model by identifying the crucial parameters in the development of

infant walking – parameters such as leg fat, muscle strength, gravity, and inertia. The brain

and the rest of the central nervous system do not have a privileged position in generating

this complex behavior. Instead we have a behavior that can in principle be modeled by

equations tracking the interdependence of a small number of variables. Thelen and Smith

have worked this idea out in great detail with a wealth of experimental studies and

analyses.

Still, although walking is certainly a highly complex activity, it is not a very cognitive

one. Is there support for the dynamical systems approach in a more cognitive sphere?

Several examples suggest that there is. The dynamical systems approach has been profit-

ably applied to the study of human decision-making, for example.

The Decision Field Theory developed by Jerome R. Busemeyer and James T. Townsend

sets out to explain certain experimental results in behavioral economics and the psych-

ology of reasoning in terms of the interplay of seven parameters (where agents have a

choice between two actions). These parameters include settings for the strength threshold

that preference need to exceed if they are to lead to action, as well as settings for the average

gain from each action. A single difference equation exploits these seven parameters to fix

the agent’s preference at a given moment.

Another example, and one that we will look at in more detail, also derives from the work

of Thelen and Smith on infant development. Thelen and Smith have developed a dynam-

ical systems approach to how young infants understand objects.

Dynamical Systems and the A-Not-B Error

Object permanence is the infant’s understanding that objects continue to exist when they

are no longer being perceived. As we will see in much more detail in Chapter 11 (which is

dedicated to object perception), object permanence emerges in stages and is intimately

connected with the infant’s emerging “folk physics” – with its sensitivity to the basic

principles governing how physical objects behave.

One of the first to study the development of object permanence was the famous Swiss

developmental psychologist Jean Piaget. In his highly influential 1954 book The Construc-

tion of Reality in the Child Piaget described a very interesting phenomenon.

One way to explore infants’ understanding of object permanence is by looking at

whether and how they search for hidden objects. Up to the age of around 7 months infants

are very poor at searching for objects even immediately after they have seen them being

hidden. For the very young infant, out of sight seems to be, quite literally, out of mind.

From 12 months or so onward, infants search normally. But between the ages of 7 months

and 12 months young infants make a striking error that Piaget termed the stage IV error

and that is now generally known as the A-not-B error. Figure 6.5 illustrates a typical

experiment eliciting this1 error.

Infants are placed in front of two containers – A and B. They see a toy hidden in

container A and reach for the toy repeatedly until they are habituated to its presence in
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container A. Then, in plain view, the experimenter hides the toy in container B. If there is a

short delay between hiding and when the infants are allowed to reach, they will typically

reach to container A, rather than to container B (even though they have just seen the toy

hidden in container B).

Piaget himself explained the A-not-B error in terms of the infant’s developing represen-

tational abilities. He suggested that it is not until they are about 12 months old that infants

are able to form abstract mental representations of objects. Before then their actions are

driven by sensorimotor routines. In the first stage of the task, searching for the toy in

container A allows the infant to discover the spatial relationship between the toy and the

container. But this knowledge only exists in the form of a sensorimotor routine. It cannot

be extrapolated and applied to the new location of the toy. And so, infants simply repeat

the routine behavior of reaching to container A.

Exercise 6.3 Give in your own words Piaget’s explanation of the A-not-B error.

Other cognitive and neural interpretations have been proposed. On one common

interpretation, the key factor is the infant’s ability to inhibit her reaching response to

)b()a(

)d()c(

Figure 6.5 The stage IV search task, which typically gives rise to the A-not-B-error in infants at

around the age of 9 months. (a) The experimenter hides an object in the left-hand box. (b) The

infant searches successfully. (c) But when the experimenter moves the object in full view of the

infant, (d) the infant searches again at the original location. (Adapted from Bremner 1994)
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container A. The first part of the task effectively conditions the infant to make a certain

response (reaching for container A) and it is only when the infant becomes able to override

that response that she can act on her knowledge of where the toy is. This ability to inhibit

responses is tied to the maturation of the prefrontal cortex, which is generally held to play

an important role in the executive control of behavior.

For Smith and Thelen, however, these cognitive interpretations of the A-not-B error fall

foul of exactly the same sort of experimental data that posed difficulties for the cognitive

interpretation of infant stepping movements. It turns out that infant performance on the

task can be manipulated by changing the task. It is well known, for example, that the effect

disappears if the infants are allowed to search immediately after the toy is hidden in

container B. But Smith, Thelen, and other developmental psychologists produced a cluster

of experiments in the 1990s identifying other parameters that had a significant effect on

performance:

■ Drawing infants’ attention to the right side of their visual field (by tapping on a board on

the far right side of the testing table, for example) significantly improves performance.

Directing their attention the other way has the opposite effect.

■ The most reliable predictor of infant performance is the number of times the infants reach

for the toy in the preliminary A trials.

■ The error can be made to disappear by changing the infant’s posture – 8-month-old infants

who are sitting during the initial A trials and then supported in a standing position for the

B test perform at the same level as 12-month-old infants (see Figure 6.6).

If the A-not-B error were primarily a cognitive phenomenon, due either to the infants’

impoverished representational repertoire or their undeveloped cortical executive system,

then we would not expect infants’ performance to be so variable and so easy to manipulate.

It is hard to think of a cognitive/neural explanation for why standing up should make such

a drastic difference, for example.

As in the infant walking case, Smith, Thelen, and their collaborators propose a

dynamical systems model – the dynamic field model. The dynamic field represents the

Figure 6.6 An infant sitting for an A trial (left) and standing for a B trial (right). This change in

posture causes younger infants to search as 12-month-old infants do. (Courtesy L. Smith and

E. Thelen)
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space in front of the infant – the infant’s visual and reaching space. High levels of

activation at a specific point in the dynamic field are required for the infant to reach to

that point. Thelen and Smith think about this in terms of a threshold. Movement occurs

when the activation level at a particular point in the dynamic field is higher than the

threshold.

Since the model is dynamical, it is critically time-sensitive. The evolution of the field has

what Smith and Thelen term continual dynamics. That is, its state at any given moment

depends upon its immediately preceding states. So, the activation levels evolve continu-

ously over time. They do not jump from one state to another. What the model does is trace

the evolution of activation levels in the dynamic field over time as a function of three

different types of input.

■ Environmental input: This might reflect, for example, features of the layout of the

environment, such as the distance to the containers. This parameter represents the

constraints the environment poses on the infant’s possible actions. It will vary, for

example, according to whether the infant is sitting or standing. The environmental input

parameters also include the attractiveness and salience of the target, as well as contextual

features of the environment, such as visual landmarks.

■ Task-specific input: This reflects the specific demands placed upon the infant – the

experimenter drawing attention to the target, for example.

■ Memory input: The strength of this input is a function of the infant’s previous reaching

behavior. Since reaching behavior is partly a function of environmental input and task-

specific input, the memory input reflects the history of these two types of input. And, as

one would expect, it is weighted by a decay function that reflects how time diminishes

memory strength.

All of these parameters are coded in the same way, in terms of locations in the movement/

visual field. This allows them all to contribute to raising the activation level above thresh-

old for a specific location (either container A or container B).

And this, according to Smith and Thelen, is exactly what happens in the A-not-B error.

The perseverative reaching takes place, they claim, when the strength of the memory input

overwhelms the other two inputs. This is illustrated in Figure 6.7.

Exercise 6.4 Explain in your own words how the dynamic field model differs from computational

accounts of the A-not-B error.

Their explanation makes no general appeal to cortical maturation, executive control, or

the infant’s representational capacities. And it is very sensitive to how the initial condi-

tions are specified. If the strength of the memory input is allowed to diminish (by increas-

ing the delay before the infant is allowed to reach, for example) then one would expect the

error to diminish correspondingly – as indeed happens. The same holds for the other

experimental manipulations that Smith and Thelen have uncovered. These manipulations

all subtly change the inputs and parameters in the model, resulting in changes in the

activation levels and hence in the infant’s reaching behavior.
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Figure 6.7 Applying the dynamical field model to the A-not-B error. (a) The time evolution of

activation in the planning field on the first A trial. The activation rises as the object is hidden and,

owing to self-organizing properties in the field, is sustained during the delay. (b) The time evolution

of activation in the planning field on the first B trial. There is heightened activation at A before the

hiding event, owing to memory for prior reaches. As the object is hidden at B, activation rises at B,

but as this transient event ends, owing to the memory properties of the field, activation at

A declines and that at B rises.
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Assessing the Dynamical Systems Approach

The experiments and models produced by Smith, Thelen, and other dynamical systems

theorists clearly give us powerful tools for studying the evolution of cognition and

behavior. The explanations that they provide of the A-not-B error and how infants

learn to walk seem to be both more complex and simpler than the standard type of

information-processing explanations current in cognitive science. They seem more

complex because they bring a wide range of factors into play that cognitive scientists

had not previously taken into account, and they steer us away from explanation in

terms of a single information-processing mechanism toward time-sensitive complex

systems with subtle interdependencies and time-sensitivity. At the same time, their

explanations seem simpler because they do not invoke representations and

computations.

We started out, though, with the idea that the dynamical systems approach might be a

radical alternative to some of the basic assumptions of cognitive science – and in particular

to the idea that cognition essentially involves computation and information processing.

Some proponents of the dynamical systems approach have certainly made some very

strong claims in this direction. Van Gelder, for example, has suggested that the dynamical

systems model will in time completely supplant computational models, so that traditional

cognitive science will end up looking as quaint (and as fundamentally misconceived) as the

computational governor.

But claims such as these ignore one of the most basic and important features of

cognitive science. Cognitive science is both interdisciplinary and multilevel. The mind

is too complex a phenomenon to be fully understood through a single discipline or at a

single level. This applies to the dynamical systems hypothesis no less than to anything

else. There is no more chance of gaining a complete picture of the mind through

dynamical systems theory than there is of gaining a complete account through neuro-

biology, say, or AI. All of these disciplines and approaches give us deep, but partial,

insights.

The contrast that Van Gelder draws between the computational governor and the Watt

governor is striking and thought-provoking, but it cannot be straightforwardly transferred

from engineering to cognitive science. The computational governor and theWatt governor

do seem to be mutually exclusive. If we are trying to solve that particular engineering

problem we need to take one approach or the other – but not both. Nothing like this holds

when it comes to cognition, however. Dynamical systems models are perfectly compatible

with information-processing models of cognition.

Dynamical systems models operate at a higher level of abstraction. They allow cognitive

scientists to abstract away from details of information-processing mechanisms in order to

study how systems evolve over time. But even when we have a model of how a cognitive

system evolves over time we will still need an account of what makes it possible for the

system to evolve in those ways.
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Let me give an analogy. Dynamical systems theory can be applied in all sorts of areas.

So, for example, traffic jams have been modeled as dynamical systems. Physicists have

constructed models of traffic jams that depend upon seeing traffic jams as the result of

interactions between particles in a many-particle system. These models have proved

surprisingly effective at predicting phenomena such as stop-and-go traffic and the basic

fact that traffic jams often occur before a road’s capacity has been reached.

This certainly gives us a new way of thinking about traffic, and new predictive tools

that make it easier to design roads and intersections. But no one would ever seriously

propose that this new way of thinking about the collective movement of vehicles means

that we no longer have to think about internal combustion engines, gasoline, spark

plugs, and so on. Treating a traffic jam as an effect in a multiparticle system allows us to

see patterns that we couldn’t see before. This is because it gives us a set of tools for

abstracting away from the physical machinery of individual vehicles. But “abstracting

away from” is not the same as “replacing.” Cars can be modeled as particles in a

multiparticle system – but these models only make sense because we know that what

are being modeled are physical objects powered (by and large) by internal combustion

engines.

With this analogy in mind, look again at the dynamical field model in Figure 6.7.

This model may well accurately predict the occurrence of the A-not-B error in young

infants. But look at what it leaves out. It says nothing about how memory works, how

the infant plans her movement, how she picks up the experimenter’s cues, and soon.

We don’t need answers to these questions in order to construct a dynamical system

model. But nor can we simply leave them unanswered. The dynamical systems

approach adds a powerful tool to the cognitive scientist’s tool kit, but it is unlikely

ever to be the only tool.

Summary

This chapter has explored how some cognitive scientists have used the mathematical and

conceptual tools of dynamical systems theory to model cognitive skills and abilities. These

models exploit the time-sensitivity that dynamical models offer in order to plot how a

system evolves over time as a function of changes in a small number of system variables.

We looked at two examples of dynamical systems models of child development. Dynamical

systems theory offers fresh and distinctive perspectives both on how infants learn to walk

and on infants’ expectations about objects that they are no longer perceiving (as revealed in

the so-called A-not-B error). Despite the more radical claims of some dynamical systems

theorists, however, it is unlikely that traditional, information-processing models will

completely disappear from cognitive science.
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Checklist

Some cognitive scientists have turned to dynamical systems theory as an alternative to

traditional information-processing models of cognition.

(1) A dynamical system is any system that evolves over time in a law-governed way, but what

distinguishes the dynamical systems approach in cognitive science is the idea of studying cognitive

systems with the tools of dynamical systems theory.

(2) Dynamical models use calculus-based methods to track the evolving relationship between a small

number of variables over time – a trajectory through state space.

(3) Dynamical systems often display coupling (interdependencies between variables) and an attractor

dynamics (there are points in the system’s state space on which many different trajectories

converge).

(4) Cognitive systems modeled using dynamical systems theory do not display many of the classic

features of information-processing systems. Dynamical models typically are not representational,

computational, sequential, or homuncular.

Dynamical systems theory permits time-sensitive models of learning and skill acquisition

in children.

(1) Case studies include learning to walk in infancy, as well as performance on the A-not-B

search task.

(2) Support for the dynamical systems approach comes from experiments showing that performance

can be drastically altered by manipulating factors that would typically be ignored by computational

models.

(3) The explanatory power of the dynamical systems approach does not mean that it should replace

information-processing approaches to cognitive science.

(4) The dynamical systems approach sheds light on cognitive systems at a particular level of

organization. There is no reason to think that the level of explanation it provides should be the

only one in cognitive science.

Further Reading

Timothy Van Gelder has written a number of articles promoting the dynamical systems approach to

cognitive science. See, for example, Van Gelder 1995 and 1998. The papers in Port and Van

Gelder’s Mind and Motion: Explorations in the Dynamics of Cognition (1995) contain some

influential dynamically inspired studies and models (including Townsend and Busemeyer’s model

of decision-making), as well as theoretical statements. Thelen and Smith’s 1993 edited volume

A Dynamical Systems Approach to the Development of Cognition and Action provides more detail

on their studies of infant walking, as well as contributions from other dynamical systems theorists.

Their Behavioral and Brain Sciences article (Thelen et al. 2001) presents the model of the A-not-B

error. Smith and Thelen 2003 is a more accessible introduction.

The January 2012 issue of the journal Topics in Cognitive Science is devoted to the complex

systems approach to cognitive science, which is a branch of dynamical systems theory. For an
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application of the dynamical systems approach to different areas of cognitive psychology, see

Spivey 2007. For overviews and assessments of the dynamical systems approach to cognitive

science, see Eliasmith 1996, Clark 1998, Clark 2001: chapter 7, Weiskopf 2004, Clearfield et al.

2009, Spencer, Thomas, and McClelland 2009, Needham and Libertus 2011, Spencer, Perone, and

Buss 2011, Riley and Holden 2012, and Spencer, Austin, and Schutte 2012. For more recent

reviews, see Samuelson, Jenkins, and Spencer 2015 and Perone and Simmering 2017.
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Overview

Bayesianism has become increasingly important in cognitive science. It offers a (relatively) simple

model of problem solving and decision-making that has proved very profitable for modeling the

mind. This chapter introduces the basic principles of Bayesianism, illustrating them through two

very different case studies.

Section 7.1 lays out the elements of Bayesianism. The basic idea is that an organism’s

information about the world is modeled as an assignment of probabilities to different propositions

about what is going on in the world. Bayesian probabilities are not like the probability that a fair

coin will fall heads, or like life expectancy tables calculated from huge studies of mortality rates.

Those are objective probabilities, based on frequencies. Bayesian probabilities, in contrast, are

subjective. They reflect an organism’s best guess. That best guess is updated as new information

comes in. Bayesians propose that this updating takes place according to a (relatively) simple rule

called Bayes’s Rule, named after Thomas Bayes, an eighteenth-century clergyman and statistician.

Section 7.2 shows how perception can be seen as a Bayesian problem. Perceptual systems have

to work backward from noisy data to a consistent, coherent, and, it is hoped, accurate, model of

how the world is. This is an inference problem. The brain has to make a reverse inference from the
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noisy data to a hypothesis about the layout of the world. This is exactly the kind of inference for

which Bayes’s Rule is particularly well suited. We will illustrate this through a Bayesian model of

the phenomenon of binocular rivalry.

The theory of expected utility is an extension of Bayesian principles to decision-making. Section

7.3 introduces the principle of expected utility and explains how expected utility is calculated. Our

second illustration of Bayesian modeling comes from the growing field of neuroeconomics, which

uses economic tools such as the theory of expected utility to studying the brain. We will look at a

series of experiments tracking individual neurons in an area of the parietal cortex known as the

lateral intraparietal area (usually abbreviated as LIP). There appear to be neurons in LIP that code

for probability and for analogs of utility and expected utility.

7.1 Bayesianism: A Primer

Remarkably, given how powerful it is as a modeling tool, the basic elements of Bayesianism

are really pretty straightforward. There are three key ideas.

■ Belief comes in degrees.

■ Degrees of belief can be modeled as probabilities, and so have to confirm to the basic

principles of the probability calculus.

■ Learning takes place by updating probabilities according to Bayes’s Rule.

This section presents these three key ideas in turn. From a technical point of view, a basic

knowledge of the probability calculus is really all you need to see what is going on.

Figure 7.1 An illustration purporting to be of Thomas Bayes from a 1936 book on the history of

life insurance. (From Wikimedia Commons)
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Degrees of Belief and Subjective Probability

It is natural to talk about cognitive systems having beliefs about their environment. But

what are beliefs? Most people think about beliefs in a very particular way. They think of

them as two-valued states. A belief is either true or it is false. If you believe that there is a

predator hiding in the woods, then either there is a predator there and your belief is correct,

or there is no predator and your belief is incorrect. There is no in-between state. Beliefs are,

as it were, pass/fail.

For Bayesians, this is completely the wrong approach. They think that belief is not an

on-off state. It comes in degrees. At one end of the spectrum are things in which you are

completely confident. At the other end of the spectrum are things that you have absolutely

no confidence in at all. From a Bayesian perspective, the interesting things all happen in

between these two extremes. Most of what we believe about the world we have some

confidence in, but not complete confidence.

Exercise 7.1 Give examples of (a) something in which you have complete confidence; (b)

something in which you have no confidence whatsoever; (c) something in which you are fairly

confident, but not completely so; and (d) something in which you have a slight degree of

confidence.

The second key idea of Bayesianism is that degrees of belief are probability assignments.

Bayesians replace the vague idea of having more or less confidence in some proposition

with the much more precise notion of assigning a particular numerical probability to that

proposition. So, rather than describe an organism as being more confident than not, but

still some way short of completely confident, that there is a predator in the woods, a

Bayesian might say that the organism assigns a probability of 0.7 to there being a predator

in the woods.

Exercise 7.2 Go back to Exercise 7.1 and assign numerical probabilities to your answers to (a)

through (d).

It is essential to Bayesians that degrees of belief obey the fundamental principles of the

probability calculus. So, we can use the rules of the probability calculus to update and

combine our degrees of belief. Box 7.1 offers a quick refresher of the basic rules of

probability, but here are some examples that will probably seem familiar.

■ If we assign probability p to some sentence S, then we have to assign probability 1 – p to

not-S, the negation of S.

■ If we assign probability p to S and probability q to R, and we know that S and R

are (probabilistically) independent of each other, then we have to assign probability p ± q

to S AND R (i.e., to S and R both holding).

■ If we assign probability p to S and probability q to R, and we know that S and R are mutually

exclusive, then we have to assign probability p + q to S OR R (i.e., to at least one of S and R

holding).
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BOX 7.1 Basic of the Probability Calculus

There are different but equivalent ways of presenting the probability calculus. Probabilities are

sometimes assigned to sentences and sometimes to events. If you think in terms of sentences, then it is

most natural to formulate the probability calculus in logical terms (talking about conjunctions and

disjunctions, for example). If you think in terms of events, then it is most natural to use elementary set

theory (talking about intersections and unions of events, for example, I’ll use the framework of sentences.

There are four basic principles defining how probabilities behave:

Basic principle 1: Probabilities are numbers between 0 and 1

Basic principle 2: All impossible sentences have probability 0

Basic principle 3: All necessary truths (such as “2 + 2 = 4”) have probability 1

Basic principle 4: If sentences P and Q are logically equivalent, then p(P) = p(Q)

Then, with these basic principles in place, the probability calculus contains simple rules that tell us

how to assign probability to complex sentences built up from simpler sentences for which we know

the probabilities.

The Negation Rule

If sentence S has probability p, then its negation not-S (¬S) has probability 1 – p_

The Disjunction Rule (Restricted)

If sentences R and S are mutually exclusive, then the probability of R or S is p(R) + p(S)

The Conjunction Rule (Restricted)

If sentences R and S are independent of each other (i.e., the presence of one does not make the

other more likely), then the probability of R and S is p(R) ± p(S)

In order to lift the restrictions, we need to apply the concept of conditional probability, as

explained in the text. The conditional probability of S conditional upon R (written p(S/R) is the

probability that S holds, on the assumption that R holds. So, for example, the probability of

throwing a 4 with a 6-sided die is 1/6. But the probability of throwing a 4, conditional upon

throwing an even number is 1/3.

We can use conditional probability to define

The Conjunction Rule (General)

p R and Sð Þ ¼ p R=Sð Þ ± p Sð Þ

And then, with this general definition of conjunction, we can define

The Disjunction Rule (General)

P R or Sð Þ ¼ p Rð Þ þ p Sð Þ ² p R and Sð Þ:

That’s it!
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From a Bayesian perspective, though, the most important inference rule for reasoning

with degrees of belief is Bayes’s Rule. But to understand Bayes’s Rule, we first need to

understand the concept of conditional probability.

Conditional Probability

Here is the basic idea of conditional probability. The probability of A, conditional upon B,

is the probability that A holds, relative to the assumption that B holds. In other words, you

assume for the moment that B holds and then calculate the probability of A on that

assumption. We write the probability of A, conditional upon B, like this:

p A=Bð Þ

So, if “A” stands for “There is thunder” and “B” for “It is raining,” then p(A/B) is the

probability that there is thunder, if we assume that it is raining.

Exercise 7.3 Explain why, if “A” stands for “There is thunder” and “B” for “It is raining,” then

you would expect p(A/B) to be greater than p(A).

Here is a diagram that will get us started on understanding conditional probability.

You can think about probabilities in terms of a sample space. The sample space is, as it

were, all the possibilities that there are. Individual probabilities are regions of the sample

space, which we measure by how much of the sample space they occupy. So, for example,

in the diagram the probability of A is the proportion of the sample space in which A is true.

If A is true in 30 percent of the sample space, then the probability of A is 0.3. And the same

holds for B, of course.

BA

Figure 7.2 A diagram showing (a) the proportion of the probability space in which A is true, (b)

the proportion of the probability space in which B is true, and (c) the intersection of A and B (which

is the region where A and B are both true).

Bayesianism: A Primer 175



Now, what about the probability of the conjunction A&B? Well, it’s easy to see what

that is from the diagram. The probability p(A&B) is the proportion of the sample space in

which both A and B are true – where the A-space overlaps with the B-space.

So, finally, what about the probability of A conditional upon B? Well, for p(A/B) we also

need to consider the region of the sample space that is both A and B. This is the intersection

of A and B. But we are not looking at how that region of the sample space relates to the

sample space as a whole. Since we are looking at A, conditional upon B, we are interested

only in the relation between the A and B region of the space and the B region of the space.

In other words, p(A/B) is the proportion of the intersection of A and B to the B-space.

Well, if you find that convincing, then you will have no problem with the formal

definition of conditional probability, because the formula for conditional probability is

basically a translation of what I’ve just said into the language of probability. Here it is:

p A=Bð Þ ¼ p A & Bð Þ
p Bð Þ

In other words, to derive the conditional probability p(A/B) you take the probability of

A and B both holding (i.e., p(A & B)) and divide by the probability that B holds.

Exercise 7.4 Suppose you have a fair coin, which you toss twice. Let “A” stand for “the first toss

comes up heads” and “B” for “the second toss comes up heads.” Calculate (a) p(A); (b) p(B); and

(c) p(A & B). Then (d) use the formula in the text to calculate p(A/B) – i.e., the probability that the

second toss comes up heads, conditional on the first toss coming up heads.

Bayes’s Rule (the Short Version)

This section offers a nontechnical presentation of the basic idea behind Bayes’s Rule. The

rule actually follows fairly straightforwardly from the definition of conditional probability.

See Box 7.2 for the long version, with more details.

To see what Bayes’s Rule allows us to do, it helps to think about situations in which you

have a hypothesis that you are trying to decide whether to accept or reject. You have some

evidence for the hypothesis. So, the obvious question to ask is: How strong is that

evidence?

When we ask that question, what we are really asking is: How likely is it that the

hypothesis is true, given the evidence? And that, in turn, is really a question about

conditional probability. We are asking about the probability of the hypothesis conditional

upon the evidence: p(Hypothesis/evidence).

Let’s make things a little simpler with some obvious abbreviations. I’ll use “H” for the

hypothesis and “E” for the evidence. So, what we are trying to discover is p(H/E).

Often, in this sort of situation, we have information about how likely the evidence is,

given the hypothesis. In other words, we might know the conditional probability p(E/H).
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BOX 7.2 Deriving Bayes’s Rule

Here’s the formula for Bayes’s Rule, using the abbreviations in the main text (“E” for evidence and

“H” for hypothesis):

p H=Eð Þ ¼ p E⁄Hð Þp Hð Þ
p E=Hð Þp Hð Þ þ p E=¬Hð Þp ¬Hð Þ

Let’s start with the top of the equation (the numerator). This is the probability of the evidence,

conditional upon the hypothesis, multiplied by the probability of the hypothesis. The key thing to

understand here is that this amounts to the probability of the evidence and the hypothesis both

holding. In other words, p E=Hð Þp Hð Þ gives us p(E & H).

Now, look at the bottom of the equation (the denominator). This has two parts, connected by an

addition sign. The first part is the same as the numerator. It is essentially p(E & H). So, it is the

probability of the evidence and the hypothesis both holding. The second part works the same way,

so that p E=¬Hð Þp ¬Hð Þ comes out as p(E & ¬H). This is the probability that the evidence holds, but

not the hypothesis. In other words, that you have a false positive.

When you put everything together in the denominator, you should see that it gives the

probability that either you have a true positive test (the hypothesis and the evidence both hold) or

you have a false positive test (where the evidence holds but not the hypothesis).

But these are the only two options. Since you’ve had a positive test, it has to be either true or

false. So, what the denominator really adds up to, then, is simply the probability of getting a

positive test in the first place. In other words, you can write the denominator much more simply

as p(E).

So really, then, Bayes’s Rule is a lot simpler than it initially seems. Here’s how we can simplify it:

(1) p(H/E) = p E⁄Hð Þp Hð Þ
p E=Hð Þp Hð Þþp E=¬Hð Þp ¬Hð Þ

which simplifies to

(2) p(H/E) = p E&Hð Þ
p E&Hð Þþp E&¬Hð Þ

which simplifies to

(3) p(H/E) =
p E&Hð Þ
p Eð Þ

But now – look where we have arrived. This is a straightforward application of the definition of

conditional probability.

Exercise 7.5 To make sure that you understand the reasoning here, go through the reverse of

the simplification process, starting with the definition of conditional probability and ending up with

Bayes’s Rule.
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In that situation, what we need to do is to find a way of “inverting” this probability, so that

we can get from p(E/H) to p(H/E).

Imagine a medical scenario. You test positive for a nasty disease. So, the hypothesis (H) is

that you actually have the disease. The evidence (E) is the positive test. And suppose you

know how reliable the test is. Then you know how likely it is that you will test positive if

you actually do have the disease. In other words, you know p(E/H). But what you really

want to know is p(H/E) – that is, how likely it is that you have the disease, given that you

have tested positive.

Here is some terminology that tends to appear in discussions of Bayesian approaches to

cognitive science.

Posterior probability

This is the probability that you end up with, after applying Bayes’s Rule. It is p(H/E).

Prior probability

This is the probability that you originally assign to the hypothesis. It is p(H).

Likelihood of the evidence

This is the probability that you’ll get the evidence, if the hypothesis is true. It is p(E/H).

To continue with the medical example, the likelihood of the evidence is the reliability of

the test. If it accurately detects 99 percent of cases of the disease, then the likelihood of the

evidence is 0.99. The prior probability would be given by the frequency of the disease in the

population. So, if the disease afflicts 1 in 10,000 people then the prior probability would be

0.0001

So, using this terminology we can write Bayes’s Rule in words like this

Posterior probability of the hypothesis =
Likelihood of the evidence × Prior probability of the hypothesis

Probability of the evidence

If you remember this formulation in words, then you’ll understand the basic conceptual

foundation of Bayesian updating. If you can also remember the formula in the probability

calculus, as given in Box 7.2, then you will be able to plug numbers in and apply Bayes’s

Rule to solve specific problems.

Either way, however, the basic idea of Bayesianism is that Bayesian agents update their

beliefs by applying Bayes’s Rule. If you are a Bayesian agent, then you start off with a set of

prior probabilities. These are the probabilities that you assign to the different hypotheses

about how things might turn out. You are also aware of how likely it is, for each of these

hypotheses, that you will encounter different forms of evidence. So, you know various

likelihood probabilities. And then, as the evidence comes in, you apply Bayes’s Rule to

derive your posterior probabilities.
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It’s important to remember all of the different things that go into Bayes’s Rule. It is easy,

for example, to underestimate the importance of the priors. But that can be a grave mistake,

as you can see by looking at the equation again. The lower the prior probability of the

hypothesis is, then the lower the numerator will be in the equation (i.e., the part above

the line). Since the denumeraor (the part below the line) is less than 1, that means that the

posterior probability will end up being lower.

This means that, if the prior probability is very low, then the posterior will also be very

low, no matter what the other values are. This is very important in the context of medical

diagnosis. Suppose again that you test positive for a nasty disease that is extremely rare.

Even if the test is highly reliable (say, 0.9999), then it is highly unlikely that you actually

have the disease.

Here’s why. Suppose that only 1 person in every 100,000 has the disease. Now imagine

that 100,000 are tested. The test is highly reliable, so we can assume that that person will

test positive. But, even though the test is highly reliable, it will still misdiagnose one person

in every 10,000. So, there will be around ten false positives in our population of 100,000

people. That means that there will be eleven people testing positive, only one of whom

actually has the disease. So, your odds are actually not that bad!

Exercise 7.6 Work through the example in the text, but instead of the prior probability being 1 in

10,000, take it to be 1 in 100. How likely is it now that you have the disease?

As this little example shows, Bayes’s Rule is very powerful, despite its simplicity, and it

can give surprising results. In the next section we’ll look at how it can be applied in the

context of perception.

7.2 Perception as a Bayesian Problem

After working through the theory and the math, it is time to see how it can be applied. This

section develops a case study of how Bayes’s Rule might be used in cognitive science

modeling. We will be looking at visual perception – and in particular at a puzzling

phenomenon known as binocular rivalry. We’ll start by looking at why perception seems

a good candidate for Bayesian approaches. And then we’ll turn to binocular rivalry, and see

how we can make sense of it by assuming that the visual system is engaged in Bayesian

updating using Bayes’s Rule.

The Predictive Challenge of Perception

Perception is an obvious place to apply Bayesian ideas. Our perceptual systems deliver a

model of the environment that is, by and large, fairly accurate – at least for practical

purposes. But this model is grossly underdetermined by the information that actually

reaches the sensory systems. So, how do our perceptual systems get from proximal sensory

stimulation to a full-blown model of the distal environment?
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Back in the second half of the nineteenth century, the German physicist and psycho-

logical pioneer Hermann von Helmholtz suggested, very plausibly, that perception was at

bottom a process of unconscious inference. Inferential models of perception were also an

important part of the New Look perceptual psychology pioneered by Jerome Bruner in the

1940s. Some decades later, in 1983, Irving Rock published a famous book entitled The Logic

of Perception, which offered a very distinctive version of the inferential model of perception.

Rock was very much influenced by the Gestalt school of perceptual psychology, includ-

ing figures such as Max Wertheimer, Kurt Koffka, and Wolfgang Köhler (in Germany), and

Rudolf Arnheim (in the USA). He took from the Gestalt psychologists the idea that

perceptual inference is largely top-down and holistic. From the Gestalt perspective, what

the visual system does is impose structure on an essentially unstructured retinal image. And

in doing this it uses general principles about how objects and groups of objects form

organized patterns. These are the famous Gestalt principles of grouping. Four of these

principles are illustrated in Figure 7.3.

Proximity

(We organize nearby objects together.
Thus, you should see columns

because the dots in columns are
closer than the dots in rows.)

(We organize lines to minimize abrupt
changes. Thus, you should see the
curved line as one, with a straight
diagonal line cutting through it.)

(We organize lines to create whole
figures when possible. Thus,

you should organize this figure
as a square in spite of the gap.)

(We organize together objects that
are similar in shape. Thus, you

should see rows instead of
columns.)

Good Continuation Closure

Similarity

Figure 7.3 Four of the seven Gestalt principles of grouping, illustrated and explained.

(Downloaded from www.skidmore.edu/~hfoley/PercLabs/Shape.htm)
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So, from a Gestalt perspective and on inferentialist views such as Rock’s, the perceptual

systems form hypotheses about the distal environment based on general principles of

organization and grouping.

But still, you might reasonably wonder how exactly those Gestalt principles work. How

do those general principles of organization and grouping actually operate to structure how

we see the world?

Bayesian models of perception have got an answer to this question. They think

that perceptual systems make probabilistic inferences, so that perceptual systems

exploit a constantly updated body of probabilistic knowledge. This probabilistic

knowledge can be described in terms of the basic Bayesian concepts introduced in the last

section.

■ Perceptual systems are aiming to derive a hypothesis (H) about the layout of the distal

environment.

■ Ultimately all they have to go on is the evidence (E) provided by sensory stimulation at the

retina, or at the membrane window of the cochlea.

■ Each perceptual system aims for the hypothesis that is most probable given the evidence.

So, what it is ultimately interested in are conditional probabilities of the p(H/E) variety.

These are the posterior probabilities.

■ Perceptual systems store information about the likelihood of different environmental set-

ups. These are the prior probabilities – p(H).

■ Perceptual systems also store information about how likely different types of sensory

stimulation are, given different layouts of the distal environment. These are likelihoods,

conditional probabilities of the form p(E/H).

Perhaps you can see where the Gestalt principles might fit into this overall picture?

The Gestalt principles are essentially principles about the probable structure of the

environment. They are principles that govern how it might be reasonable to work back-

ward from patterns in the retinal image to the objects from which those patterns ultimately

originate. So, it is helpful to think of them as principles about the probability of different

types of environment setup. Or in other words, they function as Bayesian priors. Look

again at Figure 7.3 to appreciate this. The bottom left-hand box illustrates the Principle of

Continuation. Effectively, what this says is that a hypothesis about the layout of objects in

the environment that contains abrupt changes should have a lower prior probability than

one with fewer or no abrupt changes.

Looked at in this way, Gestalt principles are examples of Bayesian priors. They are

fundamental elements in the process of probabilistic inference that perceptual systems

use to formulate hypotheses about how the distal environment is laid out. So, the next

question is: How do perceptual systems make probabilistic inferences that end up in a

model of how things are in the external environment?

There are no prizes for guessing that Bayesians think that this is all done using Bayes’s

Rule! Let’s look now at an example of how this might work.
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Case Study: Binocular Rivalry

Ourfirst case study of how Bayesian approaches can be applied in cognitive science looks at

an intriguing phenomenon from visual perception known as binocular rivalry.

The Italian scientist and playwright Giambattista della Porta discovered in the late

sixteenth century that when separate images are presented to each eye, what you actually

perceive alternates between the two images. The image that you see switches seemingly at

random. Figure 7.4 illustrates two examples of stimuli that can be used to elicit the phenom-

enon. You can check the effect out for yourself. There are experimental demonstrations on

the internet. See the Further Reading section and website for details and directions.

Binocular rivalry is really a special case of the more general phenomenon of perceptual

rivalry. If you look at an ambiguousfigure, such as one of the examples inFigure 7.5, thenyour

visual systemwill lock onto one of the available interpretations and you have to work hard to

start seeing it the other way – to switch from seeing a duck to seeing a rabbit for example.

Perceptual rivalry in general, and binocular rivalry in particular, are very interesting for a

number of reasons. The key point is that what you perceive changes, even though the

stimulus remains the same. In binocular rivalry, there does not seem to be anything about

the image in front of either eye that prompts the switch. So, whatever the explanation is for

the alternating perceptions, it must lie either within the visual system, or downstream in

more central processing.

Different explanations have been proposed for binocular rivalry. Some early theorists,

including della Porta himself, took it as evidence for the view that we only ever see with

one eye at a time. Others speculated that the switch might be due to attentional factors.

Much more recently, though, a simple and elegant Bayesian explanation has been pro-

posed by Jakob Hohwy, Andreas Roepstorff, and Karl Friston in an article published in the

journal Cognition in 2008.

To appreciate their basic point, think about the challenge that the visual system faces in a

typical binocular rivalry situation, like that depicted in the left-hand pair of stimuli in

Figure 7.4. The visual system has to decide what it is looking at. Does the distal environment

contain a red iron? Or a green violin? Or some sort of mish-mash composite object that is

part iron, part violin, colored both red and green? (To simplify, I will gloss over the fact that

we are really dealing with a picture of a red iron, rather than a red iron.)

In Bayesian terms, there are three different hypotheses:

Hypothesis 1 (H1): Red iron

Hypothesis 2 (H2): Green violin

Figure 7.4 Two examples of stimuli used to elicit binocular rivalry. (Figure 1 from Freyberg et al.

2015)
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Hypothesis 3 (H3): Red-green iron-violin composite object

So – the visual system’s job is to decide which hypothesis to accept, given the evidence it

has. And the evidence is the images that are presented to each eye. In other words:

Evidence (E): Picture of red iron (L eye) and picture of green violin (R eye)

Translating this all back into the vocabulary that we looked at in Section 7.1, what the visual

system needs tofigure out is which of the following conditional probabilities is the highest:

p(H1/E)

p(H2/E)

p(H3/E)

These are the posterior probabilities – the probability, for each hypothesis, that it is true,

given the available evidence. A Bayesian visual system will accept the hypothesis with the

highest posterior probability.

Figure 7.5 Two well-known ambiguous figures: (a) Rubin’s vase and (b) the duck–rabbit illusion.

(Downloaded from https://upload.wikimedia.org/wikipedia/commons/b/b5/Rubin2.jpg and https://

commons.wikimedia.org/wiki/File:Duck-Rabbit_illusion.jpg, respectively)
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This is where Bayes’s Rule comes into play. The visual system can apply Bayes’s Rule to

derive the posterior probability for each hypothesis, and then it just needs to compare the

resulting posterior probabilities.

In order to apply Bayes’s Rule, two more types of information are needed. The first is the

likelihoods. Recall that these are conditional probabilities, specifying how likely the relevant

evidence would be if the corresponding hypothesis were true. So, for example, how likely it

would be to have a red iron image on the left and a green violin image on the right if what

was out there was a red iron. There are three likelihoods to consider:

p(E/H1)

p(E/H2)

p(E/H3)

The visual system also needs to consider the prior probability of each hypothesis. How likely

is it that what’s in front of it is a red iron (H1), a green violin (H2), or a red-green iron-violin

composite object (H3)? So, that gives us three more probabilities to factor in:

p(H1)

p(H2)

p(H3)

Bayes’s Rule tells us how to use the priors and the likelihoods to calculate the posterior

probabilities.

But wait, you might ask: How on earth is the visual system going to be able to assign

numerical values to all of these conditional and unconditional probabilities? It seems

implausible to think that the visual system might assign a specific numerical value, say

0.47, to the prior probability of the hypothesis (H1) that what’s out there is a red iron – or

to the likelihood p(E/H3) of there being a red iron image on the left and a green violin

image on the right if what was out there was a composite red-green iron-violin?

This is a very good question. It is certainly part of strict Bayesianism that a rational

Bayesian agent will always be able to assign numerically definite probabilities to any

possible outcome it considers. And opponents of Bayesianism often object that this is

not a feasible or desirable requirement. From a cognitive science perspective, though, it is

important to realize that you can apply Bayesian techniques and models to the visual

system without assuming that the visual system assigns specific numbers to the priors and

likelihoods.

To see how this works, let’s look again at the formula for Bayes’s Rule. Here it is:

Posterior probability of the hypothesis =

Likelihood of the evidence × Prior probability of the hypothesis

Probability of the evidence
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The visual system is trying to compare the three hypotheses: H1, H2, and H3. The denom-

inator (the bottom of the equation) is going to be the same for each hypothesis. (If you

want to check this, look in Box 7.2 at how p(E) is calculated.)

So, for the purposes of comparing H1 through H3, the visual system can effectively

ignore the denominator. Really, then, what it needs to do is calculate, for each hypothesis,

the product of the likelihood of the evidence and the prior probability. For H1, for

example, it would need to multiply the likelihood p(E/H1) by the prior p(H1). And so on

for H2 and H3.

But now suppose we make a simplifying assumption. Suppose we think that all the

likelihoods are the same. That means that the visual system thinks that the evidence (an

image of a red iron on the left and a green violin on the right) would be equally likely

whether there was a red iron, a green violin, or a red-green iron-violin in front of it. Then

the visual system can ignore the likelihoods too, and all it needs to look at are the prior

probabilities.

Looking at the priors, it seems reasonable to think that there is no particular reason for

the visual system to think that it is any more or any less probable that there would be a red

iron in front of it than a green violin. So, you might think that in this case

p H1ð Þ ¼ p H2ð Þ:

But at the same time, the visual system will probably think it very unlikely that it will

run into a red-green iron-violin. So, it would assign a much lower prior probability to H3.

Hence:

p H3ð Þ < p H1ð Þ and p H3ð Þ < p H2ð Þ:

So, we can put this all together to get the key idea in Hohwy, Roepstorff, and Friston’s 2008

paper. The end result is that there are joint winners. The visual system assigns the same

posterior probabilities to H1 and to H2, with both clearly preferred to H3. That gives:

p H1=Eð Þ ¼ p H2=Eð Þ:

But now the visual system has nothing to go on to choose between H1 and H2. It could

be a red iron, or it could be a green violin. So, what does it do?

Well, unable to decide between between H1 and H2, the visual system switches between

them, more or less at random. It doesn’t try to construct some sort of composite perceptual

image, because that would correspond to a much less likely outcome. Put another way, the

prior probability of the environment containing a composite object is much lower than the

prior probability that it contains an iron or the prior probability that it contains a violin.

According to Hohwy, Roepstorff, and Friston, this creates the characteristic effect of

binocular rivalry, as a rational response to a process of Bayesian updating.

Notice that all this was done without assigning any precise numerical probabilities.

Admittedly, I made it all much simpler with the assumption that the likelihoods were

the same for all three hypotheses. But actually, lifting this assumption doesn’t make it

much more complicated.
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It certainly seems reasonable that the likelihoods of the evidence would be the same for

H1 and H2. In each case, the hypothesis only explains part of what is going on in the

evidence. If H1 holds, then that explains why there is a red iron image on the left. But the

green violin is a complete mystery. But the situation is completely symmetrical for H2. If

H2 holds then that explains why there is a green violin image on the right. But now the red

iron image is completely mysterious. Either way you have to ignore part of the stimulus so

that the rest of it makes sense.

So, consider the likelihood p(E/H3). This is the likelihood that you would get the

evidence (a red iron image on the left and a green violin image on the right) if what

were out in the world were a composite red-green violin-iron. How likely is that?

Well, probably not very likely at all. If the visual system is even remotely reliable, then

you would expect one or both eyes to generate an image of what is out in the world,

namely, a red-green iron-violin. It seems unlikely that a composite object would yield two

distinct retinal images, neither of which really corresponds to what is supposed to

generate them.

So, the visual system will assign a lower probability to p(E/H3) than to either p(E/H1) or p

(E/H2). And then, just as before, Bayes’s Rule will continue to have the posterior probabil-

ities of H1 and H2 come out the same, conditional upon the evidence. And each of them

will be more probable than H3, given the available evidence. The pieces are still in place for

a Bayesian visual system to display the binocular rivalry effect.

Exercise 7.7 Write down in your own words a summary of the Bayesian explanation of binocular

rivalry.

7.3 Neuroeconomics: Bayes in the Brain

We turn now to a second, and very different, example of how Bayesian principles can be

fruitfully used to study the brain. This example uses another important dimension of

Bayesianism – the theory of expected utility. It comes from neuroeconomics.

Neuroeconomics is an interdisciplinary area within cognitive science. It is located at the

interface between neuroscience, on the one hand, and microeconomics, the psychology of

reasoning, behavioral finance, and decision theory, on the other.

■ Microeconomics is the branch of economics that studies how individual consumers allocate

resources (in contrast to macroeconomics, which studies the economy as a whole).

■ The psychology of reasoning is the experimental study of how people reason and make

decisions.

■ Behavioral finance focuses on how individuals make investments, and what that can tell us

about the financial markets.

■ Decision theory is themathematical theory of rational choice and decision-making. Bayesian

approaches are very influential in contemporary decision theory.
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In brief, neuroeconomics studies how brains deal with money, investments, and risky

choices. It uses the tools of neuroscience, obviously, but combines them with experimental

paradigms that psychologists have developed to study reasoning and data from financial

markets, as well as theoretical models from decision theory and elsewhere.

Neuroeconomics has, broadly speaking, two different dimensions. One dimension is

studying the neuroscience of decision-making – looking to see how value is computed in

the brain and how such computations play into decision-making. The second dimension

works in the opposite direction, as it were. It takes the theoretical tools that Bayesianism

uses to study decision-making and then applies those tools to study the brain. This is the

dimension of neuroeconomics that we will be exploring.

The dominant theoretical model in neuroeconomics is Bayesian expected utility theory.

This is a development of the basic Bayesian approach developed and discussed in earlier

sections. We looked at Bayesian approaches to theoretical reasoning, focusing on how to

measure the support evidence provides for a hypothesis. The principal tool was the theory

of probability, particularly Bayes’s Rule.

Bayesian expected utility theory also has the theory of probability at its core, but it goes

beyond theoretical to incorporate practical reasoning. To appreciate the distinction, con-

sider the difference between these two questions:

What should I believe? (theoretical reasoning)

What should I do? (practical reasoning)

Probability theory and Bayes’s Rule are enough to answer the theoretical question

(according to strict Bayesians). But we need more machinery for the practical question.

That’s where expected utility theory comes into play. The concept of utility allows us to

model how much an individual values different outcomes. Being able to measure value in

this way allows us to choose between different courses of action as a function of two things.

We need, first, to take into account, for each available course of action, howmuch we value

each of its different possible outcomes. And then, second, we need to consider how likely

each of those outcomes is.

Combining probability and utility allows a rational chooser to maximize expected

utility. We’ll look in more detail at how this works next. And then we’ll look at some

exciting experiments using single-cell recordings on monkeys that have identified individ-

ual neurons in the parietal cortex that seem to code for analogs of the basic concepts of

expected utility theory.

What Is Expected Utility?

The theory of expected utility is the cornerstone of many social sciences, but it is particu-

larly prominent in economics. Although the actual concept of utility did not appear until

the nineteenth century, it has its roots in the sixteenth and seventeenth centuries when

mathematicians (and professional gamblers) were starting to develop ideas about probabil-

ity in order to understand games of chance.
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The best place to start is with the concept of expected value (and, by the way, what we

are talking about here is monetary value, not artistic value, or esthetic value). Here’s a

simple example. What is the most that you would pay for the opportunity to play a game

in which you win $10 if a fair coin is tossed and lands heads, but get nothing if it comes

up tails?

Let’s assume, for the sake of argument, that you are what is called risk-neutral. That

means that you have no views either way about taking risks. You are not prepared to pay

extra because you enjoy the thrill of gambling. And nor do you require any special

compensation to bet money on the toss of a coin.

It seems intuitive that a risk-neutral person would pay up to $5 for the chance to play

this game. Why? Because there are two possible outcomes – heads or tails. If the coin comes

up heads, she will walk away with $10. If it comes up tails, she will get $0. So, her average

return will be $5. If she pays less than that, she might reasonably think she’s got a bargain.

But if she pays more, then it looks as if she has been fleeced (unless she is risk-loving and

prepared to pay a premium because she loves gambling). So, in the standard terminology,

the expected monetary value of this game is $5.

You can see why, from the perspective of a seventeenth-century professional gambler,

expected value would be a very useful concept. If you know the expected value of a gamble

and your opponents do not, then you can set the odds so that you are guaranteed to come

out on top over the long term. In essence, this is why casinos and lotteries always win in

the long run. They set the odds so that punters are always paying more than the expected

value of the game or the ticket.

But in some instances the concept of expected value gives strange and implausible

results. Suppose, for example, that you have the opportunity to play the following game.

St. Petersburg Game

A fair coin is tossed. If the coin lands heads, you receive $2 and the coin is tossed

again. If it lands tails, the game ends. But if it lands heads, then you will receive $4 and

the coin is tossed again. The game will continue as long as the coin lands heads. At each

round the pay-off (for heads) will be twice what it was in the previous round.

Think about the expected value of the St. Petersburg game. The expected value of the game

is the expected value of continuing to get heads. On each toss of a fair coin, the probability

of heads is 0.5. So the expected value of the game is (0.5± $2) + (0.5 ± $4) + (0.5 ± $8) + . . .

and so on indefinitely.

You should be able to see that the expected value is infinite (if not, try rewriting the sum

as 1 + 2 + 4 + 8 + . . .). So, if we think about this the same way as the earlier example, you

should be prepared to pay an infinite amount of money to play this game. This is obviously

absurd. Very few people would be prepared to pay more than a few dollars for the chance to

play the St. Petersburg game. So, something must be wrong with the concept of expected

value. But what?

Exercise 7.8 How much would you pay for a chance to play the St. Petersburg game? Explain

your answer.
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The St Petersburg game was first proposed by the eighteenth century Swiss mathem-

atician Nicholas Bernoulli. His brother Daniel came up with a solution (which he

published in the Commentaries of the Imperial Academy of Sciences in St Petersburg – hence

the name). In essence, Daniel Bernoulli concluded that we should not try to value a

gamble in terms of its expected value. In its place, he introduced the concept that we

now call utility and proposed, in effect, that we think in terms of expected utility rather

than expected value.

The basic idea behind the concept of utility is that utility is an index of the strength of

your preference. In other words, to say that you assign more utility to X than to Y is to say

that you prefer X to Y and so, given the choice, you will choose X over Y. The point of

introducing the concept of utility is that, in the standard phrase, utility is not linear with

money. That means that the utility you assign to something is not directly proportional to

its expected (monetary) value.

Money has what is often called diminishing marginal utility. The additional utility you get

from an extra $10 depends upon how much money you already have. The $10 that takes

your net worth from $100 to $110 will probably mean much more to you than the $10 that

takes you from $1,000,000 to $1,000,010.

Different disciplines understand utility in different ways. From the perspective of most

economists, for example, utility is solely a measure of preference as revealed by the choices

people make. It is a purely operational notion, describing the choices that people make. On

this way of thinking about utility, to say that a person assigns more utility to X than to Y is

simply to say that, if they are consistent in certain ways, then they will choose X over Y.

Utility is just a description of choice behavior.

For many psychologists and other social scientists, on the other hand, utility is not

purely operational. It is a genuine psychological quantity that explains why people make

the choices that they do. If I say that a person assigns more utility to X than to Y, then I am

not just predicting that they will choose X over Y, I am explaining why they will make that

choice. On this view, therefore, utility is an explanation of choice behavior. In cognitive

science, utility is typically understood as an explanatory construct, rather than as a purely

descriptive one.

Combining the concept of utility with the theory of probability discussed earlier gives

the Bayesian approach to practical reasoning and decision-making. The central notion is

the idea of expected utility. As its name suggests, expected utility is just like expected value,

except that the concept of value is replaced by the concept of utility.

To calculate the expected utility of a possible action, you need to start by identifying the

different possible outcomes that might result from that action. Then you assign a utility to

each of those outcomes. But you need to take into account not just how much you value

the different outcomes, but also how likely each of them is. So, you need to assign a

probability to each outcome. Then for each outcome you multiply its utility by its prob-

ability. Adding together the results of this operation for each outcome gives you the

expected utility for the action.

Expected utility is much more generally applicable than expected monetary value. It

can be applied in cases where there is an easily identifiable expected value. You can assign
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an expected utility to a lottery ticket. You might have a lottery ticket with an expected

value of $1 (it might be one of ten tickets in a lottery with a $10 prize, for example). But

you might assign that lottery ticket a lesser utility than you assign to having $1 in cash.

That is actually how economists define being risk-averse. Or you might assign the lottery

ticket a greater utility than having $1 in cash – which would be the definition of being

risk-loving.

And you can also apply the concept of expected utility in nonmonetary contexts, where

it is not obvious that there is any expected value. In fact, if you are a strict Bayesian you will

think that utility and probability are all that you need. This is because Bayesians think that

rational decision-makers will always act in a way that maximizes expected utility. In other

words, the rational thing to do in any situation is always to choose the action that

maximizes expected utility.

Exercise 7.9 You are considering two possible actions – going for a swim in the river and

going to watch a movie. The weather is doubtful and there is a 40 percent chance of rain. In

general, you prefer swimming to movie-going, but not when it rains. Swimming offers

10 units of utility (standardly called utils) when it is not raining, but only 3 utils in the

rain. Going to the movies will give you 6 units of utility, irrespective of the weather. As a

Bayesian decision-maker, concerned only to maximize expected utility, which action should you

choose?

This seems a long way from cognitive science, you might think. What has this all got to

do with how we think about cognition? Well, in the next section we will see how this

model can be applied in a very unexpected way – to shed light on the behavior of neurons

in a region of the parietal cortex

Case Study: Neurons That Code for Expected Utility

The experiments that we will be looking at in this section all rely on recording the activity

of single neurons in monkeys. The technology for doing this was developed in the 1950s

by Herbert Jasper at the Montreal Neurological Institute in Canada and Edward Evarts at

the National Institutes of Health in the United States. Tiny electrodes are inserted into the

monkey brain. This can be done while the animal is awake because there are no pain or

touch receptors in the brain. The electrodes are small and sensitive enough to detect the

firing rates of individual neurons.

Interestingly, some of the earliest experiments to use single-cell recording in awake

monkeys studied the parietal cortex. Vernon Mountcastle and his research group of

neurophysiologists developed influential experimental paradigms for studying how

monkeys react to visual stimuli. They used fruit juice rewards to train their monkeys to

make specific responses to visual cues. These experiments started a lengthy debate about

what the parietal cortex actually does. Mountcastle took the view that the parietal

cortex’s job was to issue motor commands. The other side of the debate was taken up
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by Michael Goldberg (then at the National Institutes of Health) who hypothesized that

the parietal cortex had more to do with directing attention to highlight particular regions

of the visual field.

The protracted debate between Mountcastle and Goldberg is fascinating but primarily

concerns us as the background for a set of experiments carried out by Paul Glimcher (of

New York University) and Michael Platt (from the University of Pennsylvania). They

originally thought that they were developing experiments to settle the debate between

Mountcastle and Goldberg. As it turned out, however, they ended up finding intriguing

evidence of neurons that have significant Bayesian characteristics.

To understand the experiments, you need to know a little about how the muscles

around the eye work. An important part of what they do is move the eyes in order to

compensate for our own movements. This allows us to have (relatively) stable perceptions

of the world around us. They also move the eyes so that the high-resolution part of the eye

(the fovea) is focused on interesting and important things in the environment. These gaze

alignment movements come in two varieties:

Saccadic eye movementsmove the line of sight very quickly from one place to another in the

visual environment. This allows the perceiver to scan the environment (to detect a

predator, for example)

Smooth pursuit eye movements allow the eyes to track objects moving continuously in a

single direction.

Monkeys can be trained to perform saccadic eye movements. In a typical experiment,

they are placed in front of a screen, fixating on a colored light directly in front of them.

The experimenters flash a red spot on the right side of the screen. When the monkey

made a saccadic eye movement toward the red spot, it is rewarded with a portion of

fruit juice. The Glimcher and Platt experiments are basically variations on this

basic theme.

What happens in the brain in between the monkey detecting a red spot on the right side

of the visual field and its making a saccadic eye movement (a saccade) toward the red spot?

Both ends of the process are relatively well understood. The primate visual system has been

comprehensively mapped out, and so there is no mystery about how the monkey detects

the red spot.

The other end of the process is how saccades are actually generated. This is also well

understood. It is known that the superior colliculus, which is located in the midbrain, and

the frontal eye field, which is in the frontal cortex, both play an important role in control-

ling saccades. It is also widely accepted that these two brain areas are organized topograph-

ically. That means that they are organized like a map, with individual neurons responsible

for specific locations to which a saccade might be directed. So, just before the monkey

makes a saccade to a specific location, the neuron corresponding to that location fires in

the superior colliculus and/or frontal eye field.
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The key question, then is what happens in between detecting the red spot and initiat-

ing the saccade. This is where LIP (the lateral intraparietal area) comes in. Since LIP

projects to both the superior colliculus and to the frontal eye field, it is the obvious place

to look. Figure 7.6 illustrates the route of saccade production, showing why LIP is so

important.

Platt and Glimcher came up with an ingenious set of experiments suggesting that LIP is

essentially carrying out Bayesian calculations. The experiments were fairly complicated,

but monkeys are extremely talented at learning things – and also highly motivated by

fruit juice.

Experiments in this area are typically set up so that a particular action will always meet

the same response. So, if a monkey is being trained to push a lever when it sees a red light

on the right-hand side of its visual field, the correct action will always be rewarded (by

delivery of fruit juice, typically). Moreover, the rewards are constant. If the reward for the

correct action is 4 ml of juice on the first trial, it will still be 4 ml of juice on the

twentieth trial.

Translating into our Bayesian language, what this means is that the reward is always

delivered with probability 1, while the utility of the reward remains constant. Platt and

Glimcher’s breakthrough idea was to vary both probability and utility. Varying the size of

the reward and how likely it is to be delivered allowed them to explore whether neurons are

sensitive to those variations in the reward. In effect, it allowed them to test for Bayesian

neurons.

Figure 7.6 The principal pathways for saccade production. LIP = lateral intraparietal area. FEF =

frontal eye field. SC = superior colliculus. BS = brain stem. Note that, while LIP and the FEF are

cortical structures, SC and BS are much more primitive areas and not part of the forebrain at all.

(Figure 10.2 from Glimcher 2003: 230)
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Probability-Detecting Neurons

To explore whether neurons in LIP are sensitive to probability, Platt and Glimcher set up

a saccade experiment where the probability that the saccade would be rewarded varied.

As usual, the monkeys started by fixating on a light at the center of the screen. Shortly

afterward, two other lights appeared on the screen, one on the left of the fixation point and

one on the right. These were the targets for the saccades. Then the fixation light changed

color, turning either red or green. The monkeys had been trained that when the fixation

light turned red, they would be rewarded if they made a saccade to the left –while a saccade

to the right would be rewarded if the light was green.

The twist to the experiment was that the fixation light was set up to turn red 80 percent

of the time and green 20 percent (or the other way around, depending on the block). The

experimental setup is illustrated in Figure 7.7.

Platt and Glimcher assumed that over the course of a 100-trial block the monkeys would

have typically figured out that, say, a saccade to the left was much more likely to be

rewarded than one to the right. So, they recorded throughout each trial from representative

neurons in LIP.

To make sense of the results, they just compared, for each neuron, the trials where the

stimulus and themovement were the same. So, for example, they compared all the trials in a

given block where the monkey made a saccade to the left in response to a red light. Doing

that made it possible to compare blocks where the probability of a red light (and hence a

reward formaking a saccade to the left) was lowwith blockswhere redhad ahigh probability.

Here’s what they found (toward the end of the blocks, when the monkey should have

learned which response was more likely to the rewarded).

■ Prior to the fixation light changing color, in blocks where the probability of being rewarded

with a left saccade was high, a typical LIP neuron had a much higher firing rate than in

blocks where the probability of reward was low. Note that this is the firing rate before the

monkey receives any indication as to which direction will be rewarded

20% 80%

Figure 7.7 Platt and Glimcher’s probabilistic cued saccade task. (Figure 10.11 from Glimcher

2003: 257)
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■ After the fixation light changed color, the firing rate for the saccade that was definitely

going to be rewarded was maximal, even if the probability that the saccade would be

rewarded had been low. Note that this is the firing rate after the fixation light has indicated

which direction will be rewarded.

Translating this back into Bayesian terms, the first finding seems to show that the neurons

are encoding the prior probabilities – the probability that a given saccade will be rewarded,

before it is known which saccade will be rewarded. And the second seems to show that

the neurons are updating the priors to posteriors when the fixation light changes color.

Once the fixation light has turned either red or green it is certain which saccade will be

rewarded, no matter whether it was a high-probability saccade or a low-probability one.

And the neurons respond by firing at full blast, as it were. Figure 7.8 illustrates both these

findings.

You can see how the neuron’s firing rates in the low-probability and high-probability

conditions are very different before the moment when the fixation point changes color.

Then they subsequently end up firing at the same rates, because the changing color of the

fixation point indicates that they actually will be rewarded (remember that all the trials

illustrated ended with rewards).

Exercise 7.10 Explain in your own words why Platt and Glimcher think that they have discovered

evidence of neurons that code for probability.

Utility-Detecting Neurons

So – what happens if probabilities (and all the other dimensions of the experiment) are

held constant, but the quantity of the reward is varied? Well, as Platt and Glimcher

observed, that would be a very good test of whether LIP neurons are sensitive to utility.

Figure 7.8 Activity of an LIP neuron during the probability experiment. Rows of tick marks in the

panel indicate precise times of neural action potentials during each of twenty trials used to

compute the averages shown as thick lines. (Figure 10.12 in Glimcher 2003: 260)
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And to explore it they used a very similar cued saccade task to the one we have been

considering.

As before, the monkeys fixate on a point in the center of the screen. When the fixation

point changes color, that indicates to the monkey that the reward will be delivered if the

monkey makes a saccade to the left (red) or the right (green). The probability of red versus

green was held constant, with each color coming up on exactly half the trials. What varied

was the quantity of the reward. In one block, for example, the reward for looking left might

be double that for looking right.

The results are illustrated in Figure 7.9. As before, what the figure shows are the

average response profiles over time of a single neuron in two different blocks. In both

blocks the stimulus and response are held constant. They are all cases, say, where the

light turns green and the monkey is rewarded for a saccade to the right. What varies is

the quantity of the reward. In one block, marked by a light-colored line, the response

receives a low reward. In the other, marked with a bold line, the response receives a high

reward.

Before the light changes color, the neuron fires more strongly on average in the high-

reward block than in the low-reward block. After the light changes color (and so when the

reward is revealed), the average firing rate increases significantly in both conditions. But

the difference across the two conditions remains constant. The neuron responds more

vigorously to the larger reward.

Strictly speaking (as Platt and Glimcher note), this experiment does not show that LIP

neurons are sensitive to utility. Their firing rates correlate with the quantity of reward, but

that is not necessarily the same as the utility that the monkey might derive from the

reward. The experiments don’t reveal any analog to the phenomenon of diminishing

marginal utility, for example. But still, they are highly suggestive, and exactly what one

would expect in a Bayesian brain!

Figure 7.9 Platt and Glimcher’s cued saccade experiment, with stimulus and response held

constant and the quantity of reward varied. The neuron’s average firing rate is shown for a high-

reward block (bold line) and a low-reward block (light-colored line). (Figure 10.13 from Glimcher

2003: 262)
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Combining Probability and Utility

So, the two different cued saccade experiments just reviewed seem to uncover neurons

in LIP that code, first, for the probability of a reward and, second, for the size of a reward

(and perhaps for its utility). We are close to having all the ingredients for a fully

Bayesian brain, in which neurons code for something very close to expected utility.

Because, as we saw earlier, expected utility is really just a combination of probability and

utility. The expected utility of an action is arrived at by summing the utility of its

different possible outcomes, each weighted by the probability with which it will occur.

That takes us to the final experiments for this case study, because Platt and Glimcher

came up with intriguing results here too – not quite expected utility, but

intriguingly close.

To study sensitivity to expected utility, Platt and Glimcher needed to adapt the cued

saccade paradigm we have been looking at. They needed to introduce an element of choice,

because expected utility really only applies when monkeys (or people) have more than one

available action. The principle of expected utility is a tool for choosing between two or

more available actions (choose the action with the highest expected utility).

So, they turned the cued saccade task into a free-choice task. As before, the monkey

fixated on a spot at the center of the screen. But this time he could choose to look at a

stimulus on the left or a stimulus on the right. Everything was held constant within each

block of 100 trials, but the quantity of the (fruit juice) reward varied across blocks – 0.2 ml

for looking left and 0.1 ml for looking right, for example.

From a strict Bayesian perspective, there is an optimal way of responding in this type of

experiment. You should sample the two alternatives until you have worked out which

yields the highest reward, and then stick with that option until the end of the trial. That

would be the best way to maximize expected utility over the long run.

It turns out, though, that the monkeys did not adopt the optimal strategy. Instead they

displayed a form of matching behavior. That is, they split their choices between the two

alternatives in a way that matched the distribution of total reward across the two alterna-

tives. In other words, if looking right yielded twice the reward of looking left, then they

looked right twice as often as they looked left. This is not the behavior that you would

expect from an animal that was maximizing expected utility. However, things turned out

to be more complicated than initially appeared.

Platt and Glimcher noticed something very interesting when they looked at what the

monkeys were doing on a trial-by-trial basis. They saw that there was a pattern to the

individual “choices” that the monkeys made. When they looked at each individual choice,

they saw that the monkeys seemed to be engaged in a form of maximizing behavior. The

monkeys were not maximizing expected utility, but they seemed to be maximizing some-

thing else that was not that far off from expected utility.

They used a version of melioration theory, developed by the animal behaviorist Richard

Herrnstein (who, incidentally, first discovered the matching phenomenon when studying

pigeon pecking behavior) in order to estimate how much value the monkey attached to
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each option in each trial. So, they were able to estimate the expected value to the monkey

of looking left versus looking right on trial 47, for example.

According to melioration theory, value is fixed by local rates of reward. An animal

behaving according to melioration theory will choose the option that seems most attract-

ive at that time. And attractiveness at a time is fixed by the rewards that that option has

yielded in recent trials. So, if looking left has had a good track record in yielding the reward

on the past few trials, then the monkey will continue to look left. But if looking left starts to

look unsuccessful, the monkey will switch and start to look right.

It turned out that the monkeys were actually behaving consistently with melioration

theory, when each trial was viewed in the context of the previous ten trials. What that

means is that the monkeys tended to choose the option that had been most highly

rewarded over the previous ten trials. So, they were maximizing expected value, as

calculated by melioration theory. This is not the same as the expected utility of each of

the two options, because it is a local quantity that looks back to the history of rewards,

whereas expected utility is more of a global measure of overall rewards. But still, it is

certainly a related measure (and in fact, expected value in the melioration theory sense, is

a good approximator of expected utility in many contexts). This is illustrated in

Figure 7.10.

The important point from the perspective of neural economics, though, is that when

Platt and Glimcher looked at the data from this perspective, they discovered a close

correlation between the firing rates of individual neurons and the anticipated value to

the animal, as computed by melioration theory. So, when the estimated value to the

animal of a particular option was low (based on the results of the previous ten trials) the

firing rates would be low. And the greater the estimated value, the higher the firing rate.

The neurons, it seemed, were firing in accordance with expected value, as calculated by

melioration theory.

Estimated Value

Figure 7.10 Activity of an LIP neuron while a monkey makes his own choice compared to a

behaviorally derived estimate of the value of the movement to the monkey. (Figure 10.15 from

Glimcher 2003: 266)
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In conclusion, the experiments do not show that neurons in LIP are calculators of

expected utility. But they do seem to uncover neurons sensitive to the varying benefits to

the animal of different courses of action. Platt and Glimcher can have the last word:

In our free-choice task, both monkeys and posterior parietal neurons behaved as if they

had knowledge of the gains associated with different actions. These findings support

the hypothesis that the variables that have been identified by economists, psycholo-

gists and ecologists as important in decision-making are represented in the nervous

system.

(Platt and Glimcher 1999)

Summary

This chapter began by introducing the basic tools for understanding Bayesian approaches to

cognitive science. Reviewing the elements of the probability calculus allowed us to introduce

Bayes’s Rule as a tool for measuring the strength of support that evidence provides for a

hypothesis. Our first example of how the Bayesian tool kit can be applied within cognitive

science came from visual perception. The perceptual systems can be modeled as continually

solving a Bayesian problem. They have to arrive at a hypothesis about the layout of the distal

environment on the basis of partial and noisy sensory data (the evidence), and so Bayes’s Rule

seems an ideal tool. We illustrated this approach by looking at a Bayesian model of binocular

rivalry.

The second part of the chapter explored Bayesian approaches to choice behavior and practical

decision-making. The key theoretical tool here is the concept of utility, which measures how much

a decision-maker values a particular outcome. Bayesian theories of choice typically rely upon the

principle of expected utility, which states that rational decision-makers will choose actions that

maximize expected utility, where the expected utility of an action is given by the utility of its

possible outcomes, each weighted by the probability of that outcome. We looked at a series of

experiments in the burgeoning field of neuroeconomics, illustrating how neural activity can be

modeled in Bayesian terms. Platt and Glimcher’s recordings of single neurons in the LIP area of the

monkey parietal cortex uncover neurons that are sensitive to probability and to analogs of utility

and expected utility.

Checklist

Bayesianism is built on three basic ideas:

(1) Belief comes in degrees

(2) Degrees of belief can be modeled as probabilities, which means that they have to conform to the

basic principles of the probability calculus
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(3) Learning takes place by updating probabilities according to Bayes’s Rule.

Bayes’s Rule is a tool for measuring the posterior probability of a hypothesis, conditional

upon some evidence:

(1) Bayes’s Rule is calculated from the prior probability of the hypothesis, p(H), the likelihood of the

evidence, given the hypothesis, p(E/H), and the probability of the evidence, p(E).

(2) According to Bayes’s Rule, the posterior probability of the hypothesis =

Likelihood of the evidence × Prior probability of the hypothesis

Probability of the evidence

(3) Bayes’s Rule is a straightforward consequence of the definition of conditional probability.

Perception can be modeled in terms of Bayesian inference.

(1) Perceptual systems have the job of selecting between different hypotheses about the layout of the

distal environment on the basis of noisy and partial data (the evidence).

(2) This process can be modeled as an application of Bayes’s Rule, because ultimately perceptual

systems have to decide which hypothesis has the highest posterior probability, conditional upon

the evidence coming from the senses.

Binocular rivalry offers a case study in Bayesian approaches to perception.

(1) When separate images are presented to each eye, the percept generated by the visual system

alternates between the two images, seemingly at random.

(2) From a Bayesian perspective, this is an understandable response to the posterior probabilities

calculated via Bayes’s Rule.

(3) The posterior probability for hypothesis corresponding to the left image (conditional upon the

evidence) is the same as the posterior probability for the right image hypothesis, and both are

higher than the posterior probability for the hypothesis that the environment contains a

composite corresponding to a blend of the two images.

(4) Since the posterior probabilities for the left and right hypotheses are equal, the visual system can’t

decide between them, and so simply alternates.

Expected utility is the key concept for applying Bayesianism to practical

decision-making.

(1) Utility is a measure of how much a decision-maker values a particular outcome.

(2) To calculate the expected utility of an action you need to assign utilities to its different

possible outcomes and then those utilities together, each discounted by the probability that it

will occur.

(3) The St Petersburg game shows that expected utility is not necessarily the same as expected

monetary value.
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Platt and Glimcher’s experiments recording single neurons in the parietal cortex of the

monkey are an illustration from neuroeconomics of how the brain may apply Bayesian

principles.

(1) Neuroeconomics is located at the interface between neuroscience, microeconomics, the

psychology of reasoning, behavioral finance, and decision theory.

(2) Platt and Glimcher studied how individual neurons in LIP responded while monkeys made saccadic

eye movements for fruit juice rewards.

(3) Holding all other aspects of the task constant, but varying the probability that each response

would be rewarded revealed that the firing rates of individual neurons correlates with both the

prior and posterior probabilities of reward.

(4) Holding all aspects of the task constant, but varying the quantity of the reward revealed that the

firing rates of individual neurons correlates with the value of the reward (an analog of utility)

(5) Using a free-choice version of the cued saccade task revealed neurons firing according to the

estimated value to the animal of a particular response (as calculated according to Herrnstein’s

melioration theory, which differs from but is related to expected utility theory).

Further Reading

Good general introductions to Bayesian approaches to cognitive science can be found in articles by

Griffiths, Kemp, and Tenenbaum (2008), Chater et al. 2010, and Jacobs and Kruschke 2011. For an

overview of specific applications, see the special issue of Trends in Cognitive Sciences from 2006,

devoted to “Probabilistic models of cognition.” The essays in Chater and Oaksford 2008 cover a

wide range of Bayesian models.

Skyrms 1986 is a classic introduction to inductive logic and theories of probability. Hacking

2001 is more user-friendly. See Kaplan 1996 for a general philosophical defense of Bayesian

approaches to belief and Horwich 1982 for a Bayesian approach to the philosophy of science.

Jeffrey 1983 is a very influential presentation of Bayesian decision theory. For a historical

introduction to different ways of thinking about utility, see Broome 1991. I have written about

Bayesian decision theory as a theory of rationality in Bermúdez 2009.

For Bayesian approaches to perception in general, see the papers in Knill and Whitman 2008,

and for an article-length review focused on visual perception, see Kersten, Mamassian, and Yuille

2004. Hohwy 2013 uses visual perception, and in particular, the example of binocular rivalry

discussed in Section 7.2 as the starting point for a general theory of the mind as a Bayesian

predictive machine. The Bayesian model of binocular rivalry is presented in more detail in Hohwy,

Roepstorff, and Friston 2008. Clark 2016 discusses predictive coding, relating it to embodied and

situated cognition. For further good illustrations of Bayesian approaches, see Wolpert’s work on

motor control (Kording and Wolpert 2004, 2006) and Enrst and Banks on multisensory

integration (Ernst and Banks 2002).
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There is an overview of neuroeconomics from a philosophical perspective in Hardy-Vallé 2007

and articles on a range of applications in a special issue of Brain Research Bulletin from November

2005. The principal textbook for the field is Glimcher and Fehr 2014 (2nd ed.). Mountcastle et al.

1975 and Robinson, Goldberg, and Stanton 1978 are important early papers in the debate about

the specific role of neurons in the posterior parietal cortex. Chapter 10 of Glimcher 2003 accessibly

tells the story of single-neuron studies of LIP, leading up to his own experiments, which are

presented more rigorously in Platt and Glimcher 1999.
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Overview

This chapter tackles the overall organization of the mind. We start in Section 8.1 by looking at

agent architectures in AI. These are blueprints for the design of artificial agents. Artificial agents

can be anything from robots to internet bots. Looking at different architectures allows us to

distinguish cognitive systems from, for example, reflex systems, or reflex agents. Reflex systems

are governed by simple production rules that uniquely determine how the system will behave in a

given situation. In contrast, cognitive systems deploy information processing between the input

(sensory) systems and the output (effector) systems.

Intelligent agents in AI are standardly built up from subsystems that perform specific

information-processing tasks. Cognitive scientists tend to think of the mind (at least in part) as an

organized collection of specialized subsystems carrying out specific information-processing tasks.

The earliest sustained development of this idea from a theoretical point of view came in a book

entitled The Modularity of Mind, written by the philosopher Jerry Fodor. We look at Fodor’s

modularity thesis in Section 8.2.

Fodor distinguishes modular processing from central processing, responsible for general

problem solving and decision-making. Massive modularity theorists, in contrast, deny that there is

any such thing as nonmodular central processing. We look at this model in Section 8.3 and see

how it has been used to explain research into the psychology of reasoning.
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Finally, in Section 8.4 we relate the discussion of agent architectures back to earlier discussions

of different ways of thinking about information and information processing. We look at an

example of a hybrid architecture combining the physical symbol system hypothesis and the parallel

processing characteristic of connectionist networks. This is the ACT-R architecture, developed by

John R. Anderson and colleagues at Carnegie Mellon University.

8.1 Architectures for Artificial Agents

One aim of AI researchers is to build artificial agents. There are many different types of AI

agents. Robots are probably the first things to come tomind when thinking about intelligent

agents. Robotic agents are built to operate in real, physical environments. But many agents

are designed to function in virtual environments. Shopping bots are good examples.

Some bots are designed to travel around the internet comparing prices for a single item, while

others trawl through sites such as Amazon finding items that you might be likely to buy

(perhaps because they have been bought by customers who bought some items that you

bought).

Computer scientists have come up with an interesting range of different agent architec-

ture for designing artificial agents. An agent architecture is a blueprint that shows the

different components that make up an agent and how those components are organized. In

this section we will look at three different types of agent architecture:

■ A simple reflex agent

■ A goal-based agent

■ A learning agent

Not all artificial agents are intelligent agents. Looking at these architectures reveals what is

distinctive about intelligent, cognitive agents, as opposed to simpler, noncognitive agents.

The agent architectures we will be looking at range from the plainly noncognitive to the

plainly cognitive. As we go through them we get a better picture of the basic functions that

any cognitive system has to perform.

First, we need to know what an agent is. The quick definition is that an agent is a

system that perceives its environment through sensory systems of some type and acts upon

that environment through effector systems. The basic challenge for a computer scientist

programming an agent (whether a software agent or a robotic agent) is to make sure that

what the agent does is a function of what the agent perceives. There need to be links

between the agent’s sensory systems and its effector systems. What distinguishes different

types of agent is the complexity of those links between sensory systems and effector

systems.

Three Agent Architectures

The simplest type of agent in agent-based computing is the reflex agent. Simple reflex agents

have direct links between sensory and effector systems. The outputs of the sensory systems
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directly determine the inputs to the effector systems. These direct links are achieved by

production rules. Production rules take this form:

IF condition C holds THEN perform action A.

It is up to the sensory systems to determine whether or not condition C holds. Once the

sensory systems have determined that condition C holds, then the behavior of the simple

reflex agent is fixed. Figure 8.1 shows a schematic representation of the architecture of a

simple reflex agent.

Simple reflex agents are not, many cognitive scientists would think, cognitive systems.

This is because they are simply reacting to the environment in invariant ways – the same

stimulus always receives the same response. In contrast, it is often taken to be an essential

feature of cognitive systems that they can react differently to the same environmental

stimulus. This is because the actions of cognitive systems are determined by their goals and

by their stored representations of the environment. Human agents, for example, some-

times act in a purely reflex manner. But more often we act as a function of our beliefs and

desires – not to mention our hopes, fears, dislikes, and so on.

The schematic agent architecture in Figure 8.2 depicts a primitive type of cognitive

system. This is a goal-based agent. As the diagram shows, goal-based agents do not simply

act upon environmental stimuli. There are no simple production rules that will uniquely

determine how the agent will behave in a given situation. Instead, goal-based agents need

to work out the consequences of different possible actions and then evaluate those

Agent

Production
(if-then) rules

Percepts

Action 
to be done

What the 
world is like now 

Environment

Sensors

Actions
Actuators

Figure 8.1 The architecture of a simple reflex agent. Production rules are all that intervene

between sensory input and motor output. (Adapted from Russell and Norvig 2009)
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consequences in the light of their goals. This is done by the specialized cognitive systems

labeled in Figure 8.2.

But there is still something missing from goal-based agents. They have no capacity to

learn from experience – something which, surely, is necessary for any agent to count as an

intelligent agent. For that we need a learning agent. A sample architecture for a learning agent

is presented in Figure 8.3.

The learning agent has certain standards that it wants its actions to meet. These are one

of the inputs to the Critic subsystem, which also receives inputs from the sensory systems.

The Critic’s job is to detect mismatches between sensory feedback and the performance

standard. These mismatches feed into the Learning subsystem which determines learning

goals and makes it possible for the system to experiment with different ways of achieving

its goals.

As the learning agent example shows, computer scientists designing intelligent agents

typically build those agents up from subsystems performing specific information-

processing tasks. This way of thinking about cognitive systems (as organized complexes

State

How the world 
evolves

What my 
actions do

Sensors

Effectors

Agent

Environment

Goals

What the world 
is like now

What it will
be like if I do

action A

What action
I should do now

Figure 8.2 The architecture of a goal-based agent. There are information-processing systems

intervening between input and output. (Adapted from Russell and Norvig 2009)
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of subsystems) has proved very influential in cognitive science. It raises a number of

important questions:

■ How are we to identify and distinguish cognitive subsystems?

■ Are there any important differences between the subsystems responsible for sensory

processing and motor behavior, on the one hand, and those that operate between those

input and output subsystems?

■ Do all the subsystems in a cognitive system process information in the same way? Do they

all involve the same type of representations?

■ How “autonomous” are the different subsystems? How “insulated” are they from each other?

To explore these questions further we turn now to the hypothesis that the mind is

modular, proposed by the influential philosopher and cognitive scientist Jerry Fodor in

his book, The Modularity of Mind, published in 1983.

Agent

Percepts

Learning
element

Critic

Environment

Performance
Standard

Actions

learning goals

Problem
Generator

feedback

Sensors

Performance
element

Effectors

experiments

changes

knowledge

Figure 8.3 The architecture of a learning agent. Mismatches between sensory feedback and the

performance standards are detected by the Critic subsystem. The Learning subsystem determines

learning goals and allows the system to experiment with different ways of achieving its goals.

(Adapted from Russell and Norvig 2003)
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8.2 Fodor on the Modularity of Mind

Modular and Nonmodular Processing

Fodor proposes a radical distinction between modular and nonmodular cognitive pro-

cesses. On the one hand, nonmodular processes are high-level, open-ended, and involve

bringing a wide range of information to bear on very general problems. In contrast,

modular processes operate at a much lower level and work quickly to provide rapid

solutions to highly determinate problems.

As Fodor defines them, modular processes have the following four characteristics:

■ Domain-specificity. Modules are highly specialized. They are mechanisms designed

to carry out very specific and circumscribed information-processing tasks. Because

of this they only operate on a limited range of inputs (those relevant to their particular

domain)

■ Informational encapsulation. Modular processing is not affected by what is going on

elsewhere in the mind. Modules cannot be “infiltrated” by background

knowledge and expectations, or by information in the databases associated with

different modules.

■ Mandatory application. Cognitive modules respond automatically to stimuli. They are not

under any executive control and cannot be “switched off.” It is evidence that certain types

of visual processing are modular that we cannot avoid perceiving visual illusions, even

when we know them to be illusions.

■ Speed. Modular processing transforms input (e.g., patterns of intensity values picked up by

photoreceptors in the retina) into output (e.g., representations of three-dimensional

objects) quickly and efficiently.

In addition to these “canonical” characteristics of modular processes, Fodor draws atten-

tion to two further features that sometimes characterize modular processes.

■ Fixed neural architecture. It is sometimes possible to identify determinate regions of

the brain associated with particular types of modular processing. So, for example, an area

in the fusiform gyrus (the so-called fusiform face area) is believed to be specialized for face

recognition, which is often described as a modular process.

■ Specific breakdown patterns. Modular processing can fail in highly determinate ways. These

breakdowns can provide clues as to the form and structure of that processing.

Prosopagnosia is a highly specific neuropsychological disorder that affects face recognition

abilities, but not object recognition more generally.

These last two features are less central, because cognitive scientists tend to think of

cognitive modules in terms of their function (the information-processing task that they

carry out), rather than their physiology. A cognitive module has to perform a single,

circumscribed, domain-specific task. But it is not necessary that it map onto a particular
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part of the brain. Some modules do seem to be localizable, but for others we have (as yet)

no evidence either way.

Cognitive modules form the first layer of cognitive processing. They are closely tied to

perceptual systems. Here are some mechanisms that Fodor thinks are likely candidates for

cognitive modules:

■ Color perception

■ Shape analysis

■ Analysis of three-dimensional spatial relations

■ Visual guidance of bodily motions

■ Grammatical analysis of heard utterances

■ Detecting melodic or rhythmic structure of acoustic arrays

■ Recognizing the voices of conspecifics

Some of these candidate modules are close to the sensory periphery. In other words,

relatively little information processing occurs between the sense organs and the module.

This is clearly the case for color perception. Other systems are much further “downstream.”

An example here would be grammatical analysis. A lot of processing needs to take place

before there is an auditory or visual image to be analyzed for grammatical structure.

Moreover, some cognitive modules can take the outputs of other modules as inputs. It is

likely that information about the rhythmic structure of an acoustic array will be relevant to

identifying the voice of a conspecific, for example.

Most of the modules Fodor discusses are involved in perceptual information processing,

but it seems likely that many motor tasks are also carried out by modules. Planning even

the simplest reaching movement involves calibrating information about a target object (a

glass, say) with information about hand position and body orientation. The location of the

glass needs to be coded on a hand-centered coordinate system (as opposed to one centered

on the eyes, for example). Executing the movement requires, first, calculating a trajectory

that leads from the start location to the end location, and then calculating an appropriate

combination of muscle forces and joint angles that will take the arm along the required

trajectory. These are all highly specialized tasks that seem not to depend upon background

information or central processing – prime candidates for modular processing, on Fodor’s

analysis.

But, according to Fodor, not all cognition can be carried out by modular mechanisms.

He insists that there have to be psychological processes cutting across cognitive

domains. The very features of cognitive modules that make them computationally

powerful, such as their speed and informational encapsulation, mean that their

outputs are not always a good guide to the layout of the perceived environment.

Appearances can be deceptive. This means that there has to be information processing

that can evaluate and correct the outputs of cognitive modules. This is what Fodor and

others often call central processing, to distinguish it from modular processing, which is

peripheral.
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For Fodor, central processing has two distinguishing features. The first distinguishing

feature is that central processing is Quinean (named after the philosopher Willard

von Orman Quine, who famously proposed a holistic view of knowledge and confirm-

ation). For Fodor, each organism’s belief system is, in important respects, analogous to a

scientific theory. It is, in fact, the organism’s theory of the world, and so shares important

properties with scientific theories. It is the belief system as a whole that is evaluated for

consistency and coherence, for example. We cannot consider how accurate or well con-

firmed individual beliefs are in isolation, since how we evaluate individual beliefs cannot

be divorced from how we think about other elements of the system in which they are

embedded.

The second distinguishing feature of central processing is that it is isotropic. The isotropic

nature of central processing is in many ways a corollary of its Quinean property. To say that

central processing is isotropic is, in essence, to say that it is not informationally encapsu-

lated. In principle any part of the belief system is relevant to confirming (or disconfirming)

any other. We cannot draw boundaries within the belief system and hope to contain the

process of (dis)confirmation within those boundaries.

Fodor himself is very pessimistic about cognitive science being able to shed any light on

central processing. Cognitive science, Fodor argues, is really best suited to understanding

modular processes. It can tell us very little about central processes – about all the processing

that takes place in between sensory systems and motor systems. Unsurprisingly, this is not

a view that has gained much currency within cognitive science as a whole.

Nonetheless, there are influential movements within cognitive science that are skeptical

of the importance and even the existence of what Fodor calls central processing. We have

already seen some examples of this from dynamical systems theory in Chapter 6. The next

section looks at a very different approach – the massive modularity hypothesis.

8.3 The Massive Modularity Hypothesis

Supporters of the massive modularity hypothesis claim that the mind does not really do

any central processing at all. They think that all information processing is essentially

modular, although they understand modules in a much less strict way than Fodor does.

According to the massive modularity hypothesis, the human mind is a collection of

specialized modules, each of which evolved to solve a very specific set of problems that were

confronted by our early ancestors – by hunter-gatherers in the Pleistocene period, or even

earlier in the evolutionary history of the human ape. These are called Darwinian modules.

What sort of Darwinian modules might there be? Evolutionary psychologists have

tended to focus primarily on modules solving problems of social coordination, such as

problems of cheater detection, kin detection, and mate selection. But massive modularity

theorists are also able to appeal to evidence from many different areas of cognitive science

pointing to the existence of specialized cognitive systems for a range of different abilities

and functions. These include:
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■ Face recognition

■ Emotion detection

■ Gaze following

■ Folk psychology

■ Intuitive mechanics (folk physics)

■ Folk biology

There is some overlap between Fodorean modules and Darwinian modules, but typically

Darwinian modules engage in more complex types of information-processing than Fodor-

ean ones. As a consequence, they are typically not informationally encapsulated. Massive

modularity theorists describe Darwinian modules as modular primarily because they are

domain-specific.

Many different types of evidence are potentially relevant to identifying Darwinian

modules. In Chapter 11 we will look at some influential experiments on prelinguistic

infants using the dishabituation paradigm. These experiments show that infants are per-

ceptually sensitive to a number of basic principles governing the behavior of physical

objects – such as the principle that objects follow a single continuous path through space

and time. These experiments have been taken to show that infants possess a basic theory of

the physical world. This basic theory is held by many to be the core of adult folk physics,

which itself is the domain of a specialized cognitive system.

The case for massive modularity rests upon a mixture of case studies and general

arguments. The most developed case study is the so-called cheater detection module. We

will look at this first, as a detailed illustration of a Darwinian module. Then we will turn to

the general arguments.

The Cheater Detection Module

We need to start from well-known experiments on reasoning with conditionals (sentences

that have an IF . . . THEN . . . structure). These experiments, often using variants of a

famous experiment known as the Wason selection task, have been widely taken to show

that humans are basically very poor at elementary logical reasoning. It turns out, however,

that performance on these tasks improves drastically when they are reinterpreted to

involve a particular type of conditional. These are so-called deontic conditionals. Deontic

conditionals have to do with permissions, requests, entitlements, and so on. An example of

a deontic conditional would be: If you are drinking beer then you must be over 21 years

of age.

The evolutionary psychologists Leda Cosmides and John Tooby came up with a striking

and imaginative explanation for the fact that humans tend to be much better at reasoning

with deontic conditionals than they are with ordinary, nondeontic conditionals.

According to Cosmides and Tooby, when people solve problems with deontic conditionals

they are using a specialized module for monitoring social exchanges and detecting

cheaters. This is the cheater detection module.
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To see how this works, let’s start with a typical version of the Wason selection task.

Imagine that you are shown the four cards illustrated in Figure 8.4 and told that each card

has a letter on one side and a number on the other. The experimenter then asks you which

cards you would need to turn over in order to determine whether the following conditional

is true or false: If a card has a vowel on one side then it has an even number on

the other.

It is obvious that the E card will have to be turned over. Since the card has a vowel on

one side, the conditional will certainly be false if it has an odd number on the other side.

Most subjects get this correct. It is fairly clear that the second card does not need to be

turned over, and relatively few subjects think that it does need to be turned over. The

problems arise with the two numbered cards.

Reflection shows (or should show!) that the 4 card does not need to be turned over,

because the conditional would not be disconfirmed by finding a consonant on the other

side. The conditional says that any card with a vowel on one side has to have an even

number on the other side. It doesn’t say anything about cards that have consonants on one

side and so the existence of a card with a consonant on one side and an even number on

the other is irrelevant.

The 5 card, however, does need to be turned over, because the conditional will have to

be rejected if it has a vowel on the other side (this would be a situation in which we have a

card with a vowel on one side, but no even number on the other).

Unfortunately, very few people see that the 5 card needs to be turned over, while the

vast majority of experimental subjects think that the 4 card needs to be turned over. This

result is pretty robust, as you will find out if you try it on friends and family.

So, what is going wrong here? It could be that the experimental subjects, and indeed the

rest of us more generally, are reasoning in perfectly domain-general ways, but simply

employing the wrong domain-general inferential rules. But further work on the Wason

suggestion task has suggested that this may not be the right way of thinking about it.

It turns out that performance on the selection task varies drastically according to how the

task is formulated. There are “real-world” ways of framing the selection task on which the

degree of error is drastically diminished. One striking set of results emerged from a variant of

the selection task carried out by Richard Griggs and James Cox. They transformed the

selection task from what many would describe as a formal test of conditional reasoning to

a problem-solving task of a sort familiar to most of the experimental subjects.

Griggs and Cox preserved the abstract structure of the selection task, asking subjects which

cards would have to be turned over in order to verify a conditional. But the conditional was a

E C 4 5

Figure 8.4 A version of the Wason selection task. Subjects are asked which cards they would

have to turn over in order to determine whether the following conditional is true or false: If a card

has a vowel on one side, then it has an even number on the other.
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conditional about drinking age, rather than about vowels and even numbers. Subjects were

asked to evaluate the conditional: If a person is drinking beer, then that personmust

be over 19 years of age (which was, apparently, the law at the time in Florida). They

were presented with the cards shown in Figure 8.5 and told that the cards show the names

of drinks on one side and ages on the other. Before making their choice, subjects were told to

imagine that they were police officers checking whether any illegal drinking was going on in

a bar.

The correct answers (as in the standard version of the selection task we have already

considered) are that the BEER card and the16 card need to be turned over. On this version of

the selection task, subjects overwhelmingly came upwith the correct answers, and relatively

few suggested that the third card would need to be turned over. What is particularly

interesting is the subsequent discovery that if the story about the police officers is omitted,

performance reverts to a level comparable to that on the original selection task.

The finding that performance on the selection task can be improved by framing the task

in such a way that what is being checked is a condition that has to do with permissions,

entitlements, and/or prohibitions has proved very robust. The fact that we are better at

reasoning with these deontic conditionals than we are with ordinary conditionals has

suggested to many theorists that we have a domain-specific competence for reasoning

involving permissions and prohibitions.

Building on these results, the evolutionary psychologists Leda Cosmides and John

Tooby have suggested that the human mind (perhaps in common with the minds of other

higher apes) has a dedicated cognitive system (amodule) for the detection of cheaters. The

cheater detection module is supposed to explain the experimental data on the Wason

selection task. When the selection task is framed in terms of permissions and entitlements

it engages the cheater detection module. This is why performance suddenly improves.

The Evolution of Cooperation

But why should there be a cheater detection module? What was the pressing evolutionary

need to which the cheater detection module was a response? Cosmides and Tooby’s answer

these questions through an influential theory of the emergence of cooperative behavior.

Biologists, and evolutionary theorists more generally, have long been puzzled by the

problem of how cooperative behavior might have emerged from a process of natural

Beer 25Coke 16

Figure 8.5 A version of Griggs and Cox’s deontic selection task. Subjects are asked to imagine

that they are police officers checking for underage drinkers and asked which cards they would

need to turn over in order to assess the following conditional: If a person is drinking beer, then

that person must be over 19 years of age.
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selection. Cooperative behavior presumably has a genetic basis. But how could the genes

that code for cooperative behavior ever have become established, if (as seems highly

plausible) an individual who takes advantage of cooperators without reciprocating will

always do better than one who cooperates? Evolution seems to favor free riders and

exploiters above high-minded altruists.

A popular way of thinking about the evolution of cooperation is through the model of

the prisoner’s dilemma. The prisoner’s dilemma is explained in Box 8.1. Many interper-

sonal interactions (and for that matter many interactions between nonhuman animals)

involve a series of encounters each of which has the structure of a prisoner’s dilemma, but

where it is not known how many encounters there will be. Game theorists call these

indefinitely iterated prisoner’s dilemmas.

One way of dealing with repeated social interactions of this kind is to adopt a simple

heuristic strategy in which one bases one’s plays not on how one expects others to behave

but rather on how they have behaved in the past. The best known of these heuristic

strategies is TIT FOR TAT, which is composed of the following two rules:

1 Always cooperate in the first encounter

2 In any subsequent encounter do what your opponent did in the previous round

Theorists have found TIT FOR TAT a potentially powerful explanatory tool in explaining

the evolutionary emergence of altruistic behavior for two reasons. First, it is simple and

involved no complicated calculations. And second, it is what evolutionary game theorists

call an evolutionarily stable strategy – that is to say, a population where there are sufficiently

many “players” following the TIT FOR TAT strategy with a sufficiently high probability of

encountering each other regularly will not be invaded by a subpopulation playing another

strategy (such as the strategy of always defecting). TIT FOR TAT, therefore, combines

simplicity with robustness.

Here, finally, we get to the cheater detection module. Simple though TIT FOR TAT is, it is

not totally trivial to apply. It requires being able to identify instances of cooperation and

defection. It involves being able to tell when an agent has taken a benefit without paying

the corresponding price. An agent who consistently misidentifies defectors and free riders

as cooperators (or, for that matter, vice versa) will not flourish.

This is why, according to Cosmides and Tooby, we evolved a specialized module in order

to allow us to navigate social situations that depend crucially upon the ability to identify

defectors and free riders. Since the detection of cheaters and free riders is essentially a

matter of identifying when a conditional obligation has been breached, this explains why

we are so much better at deontic versions of the selection task than ordinary versions – and

why we are better, more generally, at conditional reasoning about rules, obligations, and

entitlements than we are at abstract conditional reasoning.

Exercise 8.1 Explain the argument from the evolution of cooperation to the cheater detection

module in your own words.
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BOX 8.1 The Prisoner’s Dilemma

A prisoner’s dilemma is a strategic interaction that has the following puzzling and undesirable

feature. If each participant does what seems to be the rational thing from their individual

perspective, then the result for everyone is much worse than they could have achieved by

cooperating.

The problem derives its name from a scenario where two prisoners are being separately

interrogated by a police chief who is convinced of their guilt, but lacks conclusive evidence.

He proposes to each of them that they betray the other, and explains the possible consequences.

If each prisoner betrays the other then they will both end up with a sentence of 5 years in prison.

If neither betrays the other, then they will each be convicted of a lesser offense and both end up

with a sentence of 2 years in prison. If either prisoner betrays the other without himself being

betrayed, however, then he will go free while the other receives 10 years in prison. Here is the

pay-off table.

PLAYER B

Betray Not betray

PLAYER A Betray À5, À5 0, À10
Not betray À10, 0 À2, À2

Each entry represents the outcome of a different combination of strategies on the part of

Prisoners A and B. The outcomes are given in terms of the number of years in prison that will

ensue for Prisoners A and B, respectively (presented as a negative number, since years in

prison are undesirable). So, the outcome in the bottom left-hand box is 10 years in prison for

Prisoner A and none for Prisoner B, which occurs when Prisoner A does not betray, but

Prisoner B does.

Imagine looking at the pay-off table from Prisoner A’s point of view. You might reason like this.

Prisoner B can do one of two things – betray me or not. Suppose he betrays me. Then I have a

choice between 5 years in prison if I also betray him – or 10 years if I keep quiet. So, my best

strategy if he betrays me is to betray him. But what if he does not betray? Then I have got a choice

between 2 years if I keep quiet as well – or going free if I betray him. So, my best strategy if he is

silent is to betray him. Whatever he does, therefore, I’m better off betraying him.

A game theorist would say that betray is Prisoner A’s dominant strategy. A dominant strategy is

one that promises greater advantage to that individual than the other available strategies,

irrespective of what the other player does.

Unfortunately, Prisoner B is no less rational than you are, and things look exactly the same from

her point of view. Her dominant strategy is also betray. So, you and Prisoner B will end up

betraying each other and spending 5 years each in prison, even though you both would have been

better off keeping silent and spending 2 years each in prison.
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Two Arguments

The extended case study of the cheater detection module is reinforced by two more general

arguments, to which we turn now.

The arguments rest on two assumptions about evolution. The basic assumptions (surely

both correct) are that the human mind is the product of evolution, and that evolution

works by natural selection. These two basic assumptions give us a fundamental constraint

upon possible mental architectures. Any mental architecture that we have today must have

evolved because it was able to solve the adaptive problems that our ancestors encountered.

Conversely, if you can show that a particular mental architecture could not have solved

those adaptive problems, then it could not possibly be the architecture that we now have –

it would have died out long ago in the course of natural selection.

In this spirit, the two arguments set out to show that evolution could not have selected a

domain-general mental architecture. No domain-general, central processing system of the

type that Fodor envisages could have been selected, because no such processing system

could have solved the type of adaptive problems that fixed the evolution of the

human mind.

The argument from error. This argument starts from the basic fact that what natural

selection selects for are heritable traits that preserve fitness. But what counts as fitness?

What are the criteria for fitness?

According to Cosmides and Tooby, these fitness criteria have to be domain-specific, not

domain-general. What counts as fitness-promoting behavior varies from domain to

domain. They give the example of how one treats one’s family members. It is certainly

not fitness-promoting to have sex with close family members. But, in contrast, it is fitness-

promoting to help family members in many other circumstances. But not in every circum-

stance. If one is in a social exchange with a prisoner’s dilemma-type structure and is

applying something like the TIT FOR TAT algorithm, then it is only fitness-promoting to

help family members who are cooperating – not the ones that are taking the benefit

without paying the costs.

So, because there are no domain-general fitness criteria, there cannot (they argue) be

domain-general cognitive mechanisms. Domain-general cognitive mechanisms could not

have been selected by natural selection because they would have made too many mistakes –

whatever criteria of success and failure they had built into them would have worked in

some cases, but failed in many more. Instead, say Cosmides and Tooby, there must be a

distinct cognitive mechanism for every domain that has a different definition of what

counts as a successful outcome.

Exercise 8.2 State the argument from error in your own words and evaluate it.

The argument from statistics and learning. Like the previous argument, this

argument focuses on problems in how domain-general cognitive systems can discover

what fitness consists in. The principal problem is that the world has what Cosmides and

Tooby describe as a “statistically recurrent domain-specific structure.” Certain features hold
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with great regularity in some domains, but not in others. These are not the sort of things

that a general-purpose cognitive mechanism could be expected to learn.

Their example is the model of kin selection proposed by the evolutionary biologist W. D.

Hamilton (Figure 8.6). The problem of kin selection is the problem of explaining why

certain organisms often pursue strategies that promote the reproductive success of their

relatives, at the cost of their own reproductive success. This type of self- sacrificing behavior

seems, on the face of it, to fly in the face of the theory of natural selection, since the self-

sacrificing strategy seems to diminish the organism’s fitness.

Hamilton’s basic idea is that there are certain circumstances in which it can make good

fitness-promoting sense for an individual to sacrifice herself for another individual. From

an evolutionary point of view, fitness-promoting actions are ones that promote the spread

of the agent’s genes. And, Hamilton argued, there are circumstances where an act of self-

sacrifice will help the individual’s own genes to spread and thereby spread the kin selection

gene. In particular, two conditions need to hold:

Condition 1 The self-sacrificer must share a reasonable proportion of genes with the

individual benefiting from the sacrifice.

Figure 8.6 The evolutionary biologist W. D. Hamilton (1936–2000). Jeffrey Joy
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Condition 2 The individual benefiting from the sacrifice must share the gene that promotes

kin selection.

What counts as a reasonable proportion? This is where Hamilton’s famous kin selection

equation comes in. According to Hamilton, kin selection genes will increase when the

following inequality holds:

Rxy By > Cx

Here the x subscript refers to the self-sacrificer and the y subscript to the beneficiary of the

sacrifice. The term R and y are. The term C

English, therefore, Hamilton’

degree of relatedness to the self-sacrificer, exceeds the reproductive cost to the self-sacrificer.

Typically, two sisters will share 50 percent of their genes – or, more precisely, 50 percent

of the variance in their genes (i.e., what remains after taking away all the genetic material

likely to be shared by any two randomly chosen conspecifics). So, if x and y are sisters (and

we measure relatedness in this way – evolutionary biologists sometimes use different

measures), then we can take R fitness-promoting for

one sister to sacrifi

thereby do twice as well (reproductively speaking!) as she herself would have done if she

hadn’t sacrificed herself. So, the sacrifice will be fitness-promoting if, for example, the self-

sacrificing sister could only have one more child, while the sacrifice enables her sister to

have three more.

So much for the kin selection equation. Why should this make us believe in the massive

modularity hypothesis? Cosmides and Tooby think thatmassivemodularity is the only way of

explaining how the kin selection law got embedded in the population. The kin selection

equation exploits statistical relationships that completely outstrip the experience of any indi-

vidual. According toCosmides andTooby, then,nodomain-general learningmechanismcould

ever pick up on the statistical generalizations that underwrite Hamilton’s kin selection law.

So how could the kin selection law get embedded in the population? The only way that

this could occur, they think, is for natural selection to have selected a special-purpose kin

selection module that has the kin selection law built into it.

Exercise 8.3 State the argument from statistics and learning in your own words and evaluate it.

Evaluating the Arguments for Massive Modularity

Both the argument from error and the argument from statistics and learning are compatible

with the idea that human beings (not to mention other animals) are born with certain
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innate bodies of domain-specific knowledge. This is a weaker requirement because infor-

mation processing can exploit domain-specific knowledge without being modular.

Evolutionary psychologists are not always as precise as they could be in distinguishing

between domain-specific modules and domain-specific bodies of knowledge. When we are

thinking about the organization of the mind, however, the distinction is fundamentally

important. When we formulate the massive modularity hypothesis in terms of cognitive

modules it is a bold and provocative doctrine about the overall structure of the mind. It

says that there is no such thing as a domain-general information-processing mechanism

and that the mind is nothing over and above a collection of independent and quasi-

autonomous cognitive subsystems.

But when we formulate the massive modularity thesis in terms of domain-specific bodies

of knowledge it is much less clearly controversial. The idea that we (and quite possibly

other animals) are born with innate bodies of knowledge dedicated to certain domains is

not really a claim about the architecture of cognition. Cognitive scientists have proposed

such innate bodies of knowledge in a number of different areas – such as numerical

competence, intuitive mechanics, and so on.

But, on the other hand, even if one does not accept the massive modularity hypothesis

in its strongest form, it still makes some very important points about the organization of

the mind. In particular, it makes a case for thinking that the mind might be at least partially

organized in terms of cognitive subsystems or modules that are domain-specific without

having all the characteristics of full-fledged Fodorean modules. Cognitive scientists have

taken this idea very seriously and we will be exploring it further in later chapters.

In Chapter 9 we will look at how the techniques of cognitive neuroscience can be used

to study the organization of the mind, focusing in particular on the strengths and limits of

using imaging techniques to map the mind. Chapters 13 and 14 develop a case study that

brings the theoretical discussions about modularity to life. We will look at a debate that is

very much at the forefront of contemporary cognitive science – the controversial question

of whether there is a module responsible for reasoning about the mental states of others, or

what many cognitive scientists have come to call the theory of mind module.

8.4 Hybrid Architectures: The Example of ACT-R

This discussion of modules connects up with earlier discussions of information processing.

Here’s how. It may have occurred to you that the distinction between physical symbol

systems and artificial neural networks is not all-or-nothing. Symbolic and distributed

information processing seem to be suited for different tasks and for solving different types

of problem.

The type of problems tackled by GOFAI physical symbol systems tend to be highly

structured and sharply defined – playing checkers, for example, or constructing decision

trees from databases. The type of problems for which artificial neural networks seem

particularly well suited tend to be perceptual (distinguishing mines from rocks, for
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example, or modeling how infants represent unseen objects) and involve recognizing

patterns (such as patterns in forming the past tense of English verbs).

The extreme version of the physical symbol system hypothesis holds that all infor-

mation processing involves manipulating and transforming physical symbol structures. It

may be that Newell and Simon themselves had something like this in mind. There is a

comparable version of the artificial neural networks approach, holding that physical

symbol structures are completely redundant in modeling cognition – artificial neural

networks are all we need. There seems to be room, though, for a more balanced approach

that tries to incorporate both models of information processing. The ACT-R cognitive

architecture developed by Michael Anderson and his research team at Carnegie Mellon

University is a good example of how this might work

The notion of a cognitive architecture, as used by computer scientists and psychologists,

is a practical notion. A cognitive architecture is similar to a programming language. It gives

researchers the tools to construct cognitive models using a common language and

common tool kit.

One of the first cognitive architectures was actually developed by Allen Newell, working

with John Laird and Paul Rosenbloom. It was originally called SOAR (for “state operator

and result”). The current incarnation is known as Soar. Soar is very closely tied to the

physical symbol system hypothesis. It is based on the means–end and heuristic search

approaches to problem solving that we looked at in Chapter 4. Soar is intended to be a

unified model of cognition. It does not incorporate any elements corresponding to artificial

neural networks. All knowledge is represented in the same way in the architecture, and

manipulated in a rule-governed way.

But why not think about the mind in terms of both ways of modeling information

processing, with some modules engaged in symbolic information processing and others in

distributed information processing? That is the basic idea behind the ACT-R cognitive

architecture developed by the psychologist John R. Anderson and his research team at

Carnegie Mellon.

The ACT-R cognitive architecture is the latest installment of a cognitive architecture that

was first announced under the name ACT in 1976 (“ACT” stands for “adaptive control of

thought” and “R” for “rational”). It is a hybrid architecture because it incorporates both

symbolic and subsymbolic information processing (partly in order to make it more neu-

trally plausible). One of the things that makes this architecture interesting from the

perspective of this chapter is that it has a modular organization. Different modules per-

forming different cognitive tasks and the type of information processing in a module

depends upon the type of task the module performs.

The ACT-R Architecture

The basic structure of ACT-R is illustrated in Figure 8.7. I want to draw your attention in

particular to the two boxes at the top (the perceptual module and the motor module) and

to the two modules directly below them (procedural memory and declarative memory).
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In some versions of ACT-R the perceptual module is actually composed of a range of

distinct modules – the visual module, the audition module, and so on, depending on the

number of different types of input that the architecture can receive. Likewise, the motor

module can sometimes itself be broken down into a speech module, a manual module, and

so on, depending upon the different types of action that the architecture can perform. It is

probably more helpful to talk generally about the perceptual–motor layer. Declarative and

procedural memory collectively constitute what we can term the cognitive layer.

As we will see later, one very important feature of ACT-R is that communication between

modules on different layers only takes place via buffers. A buffer is rather like a workspace. It

contains the input that is available for processing by the relevant module. So, each

module has its own buffer. Each perceptual module can only access sensory information

that is in the relevant buffer (visual information in the visual buffer, and so on). Likewise,

although not depicted in the figure, declarative and procedural memory each have their

own buffer.

Another feature of ACT-R to note is that the two cognitive modules and the buffers from

the modules in the perceptual–motor layer all feed into the pattern-matching and produc-

tion execution mechanisms. This is where the actual decision-making takes place. We’ll

look at how it works further below.

For the moment I want to emphasize that the cognitive layer incorporates two funda-

mentally different types of knowledge – declarative and procedural. In philosophy this is

often labeled the distinction between knowledge-that (declarative) and knowledge-how (pro-

cedural) – between, for example, knowing that Paris is the capital of France and knowing

how to speak French.

Exercise 8.4 Explain the distinction between knowledge-that and knowledge-how in your

own words.

Perceptual
Module

Motor
ModuleEnvironment

Procedural
Memory

Pattern
matching

Declarative
Memory

Production
execution

ACT–R Buffers

Figure 8.7 The ACT-R cognitive architecture.
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Declarative and procedural knowledge are both represented symbolically, but in different

ways. Declarative knowledge is organized in terms of “chunks.” A chunk is an organized set

of elements. These elements may be derived from the perceptual systems, or they may be

further chunks. We can think of chunks as symbol structures (say the equation 7 + 6 = 13)

built up in rule-governed ways from physical symbols (corresponding to 7, 6, +, 1, and 3).

These chunks are stored in the declarative memory module.

ACT-R uses production rules to encode procedural knowledge. Production rules identify

specific actions for the system to perform, depending upon which condition it finds itself

in. When a production rule fires (as the jargon has it) in a given condition, it can perform

one of a range of actions. It can retrieve a chunk from declarative memory, for example. Or

it can modify that chunk – updating its representation of the environment, for example, or

modifying a goal. It can also modify its environment. In this case the action really is an

action – it sends a command to the motor module. And of course, production rules can be

nested within each other, so that the output of a given production rule serves as a condi-

tion triggering the firing of another production rule. This allows complex abilities (such as

multiplication) to be modeled as sets of production rules.

So far there is nothing hybrid about ACT-R. The way declarative and procedural know-

ledge is encoded and manipulated in the architecture is entirely in line with the physical

symbol system hypothesis. And in fact, the same holds for the perceptual and motor

modules. Here too information is encoded in the form of physical symbols. In some

versions of ACT-R, the perceptual and motor modules are designed on the basis of the

EPIC (Executive Process/ Interactive Control) architecture developed by David Kieras and

David Meyer. EPIC falls squarely within the physical symbol system approach.

ACT-R as a Hybrid Architecture

What makes ACT-R a hybrid architecture is that this symbolic, modular architecture is run

on a subsymbolic base. Take another look at Figure 8.7. In many ways the overall organiza-

tion looks very Fodorean. There are various modules, and they are all encapsulated. They

communicate only via the buffer systems. And yet there is something missing. There is no

system responsible for what Fodor would call central processing. But nor, on the other

hand, is ACT-R massively modular. It does not have dedicated, domain-specific modules.

So, a natural question to ask of ACT-R is: How does it decide what to do? This is really the

question of how it decides which production rules to apply? ACT-R is designed to operate

serially. At any given moment, only one production rule can be active. But most of the time

there are many different production rules that could be active. Only one of them is

selected. How?

The job of selecting which production rule is to be active at a given moment is per-

formed by the pattern-matching module. This module controls which production rule

gains access to the buffer. It does this by working out which production rule has the

highest utility at the moment of selection.

222 Modules and Architectures



The production rule with the highest utility is the rule whose activation will best benefit

the cognitive system. What counts as benefit depends upon the system’s goals – or rather,

to the system’s current goal. The utility of a particular production rule is determined by two

things. The first is how likely the system is to achieve its current goal if the production rule

is activated. The second is the cost of activating the production rule.

So, the pattern-matching module essentially carries out a form of cost–benefit analysis

in order to determine which production rule should gain access to the buffer. This cost–

benefit calculation is really an application of the Bayesian approach discussed in Chapter 7.

What the pattern-matching module is doing is based on calculating expected utility (and

then factoring in the costs of applying the production rule).

The entire process takes place without any overseeing central system. It is a type of

“winner-take-all” system. All the work is done by the equations that continually update the

cost and utility functions. Once the numbers are in, the outcome is determined.

The designers of ACT-R describe these calculations as subsymbolic. This is a very import-

ant concept that is also standardly used to describe how artificial neural networks operate.

For contrast, note that each production rule is purely symbolic. Production rules are built

up in rule-governed ways from basic constituent symbols exactly as the physical symbol

system hypothesis requires.

The compositional structure of production rules determines how the production rule

behaves once it is activated, but it does not play a part in determining whether or not the

rule is activated. For that we need to turn to the numbers that represent the production

rule’s utility. These numbers are subsymbolic because they do not reflect the symbolic

structure of the production rule.

ACT-R has other subsymbolic dimensions, as summarized in Table 8.1. For example, it

uses subsymbolic equations to model how accessible information is in declarative memory.

The basic units of declarative memory are chunks – as opposed to the production rules that

are the basic units of procedural memory. Each chunk has associated with it a particular

activation level. This activation level can be represented numerically. The higher the

activation level, the easier it is to retrieve the chunk from storage.

The activation levels of chunks in declarative memory are determined by equations.

These equations are rather similar to the equations governing the utilities of production

rules. There are two basic components determining a chunk’s overall activation level. The

first component has to do with how useful the chunk has been in the past. As before,

usefulness is understood in terms of utility, which in turn is understood in terms of how

the chunk has contributed to realizing the system’s goals. The second component has to do

with how relevant the chunk is to the current situation and context.

The example of ACT-R reveals two important lessons.

First, debates about the organization of the mind are closely connected to debates about

the nature of information processing. Thinking properly about the modular organization

of the mind requires thinking about how the different modules might execute their

information-processing tasks. And second, different parts of a mental architecture might
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exploit different models of information processing. Some tasks lend themselves to a

symbolic approach. Others to a subsymbolic approach. The debate between models of

information processing is not all-or-nothing.

Summary

This chapter has focused on different ways of thinking about how the mind is organized. We began

by looking at three different architectures for intelligent agents in AI, in order to see what

distinguishes cognitive agents from simple reflex agents. Cognitive agents are standardly modeled

in terms of quasi-autonomous information-processing systems, which raises the question of how

those systems should be understood. Pursuing this question took us to Jerry Fodor’s analysis of

modular information-processing systems and explored his reasons for thinking that cognitive science

is best suited to explaining modular systems, as opposed to nonmodular, central information-

processing systems. We then examined an alternative proposed by massive modularity theorists,

who hold that all information processing is modular. Finally, we turned to the hybrid

architecture ACT-R, which brings the discussion of modularity into contact with the discussion of

information processing in Part III. ACT-R is a modular system that combines the symbolic approach

associated with the physical symbol system hypothesis and the subsymbolic neural networks

approach.

TABLE 8.1 Comparing the symbolic and subsymbolic dimensions of knowledge representation in

the hybrid ACT-R architecture

PERFORMANCE MECHANISMS LEARNING MECHANISMS

SYMBOLIC SUBSYMBOLIC SYMBOLIC SUBSYMBOLIC

Declarative

chunks

Knowledge (usually

facts) that can be

directly verbalized

Relative

activation of

declarative

chunks affects

retrieval

Adding new

declarative

chunks to

the set

Changing activation of

declarative chunks and

changing strength of links

between chunks

Production

rules

Knowledge for

taking particular

actions in particular

situations

Relative utility of

production rules

affects choice

Adding new

production

rules to

the set

Changing utility of

production rules
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Checklist

Computer scientists building intelligent agents distinguish different types of agent

architectures.

(1) Simple reflex agents have condition-action rules (production rules) that directly link sensory and

effector systems.

(2) Simple reflex agents are not cognitive systems, unlike goal-based agents and learning agents.

(3) Goal-based agents and learning agents are built up from subsystems that perform specific

information-processing tasks.

(4) This general approach to agent architecture raises theoretical questions explored in discussions of

modularity.

Fodor’s Modularity Thesis

(1) The thesis is built on a rejection of horizontal faculty psychology (the idea that the mind is

organized in terms of faculties such as memory and attention that can process any type of

information).

(2) It proposes the existence of specialized information-processing modules that are: domain-specific

informationally encapsulated mandatory fast

(3) These modules may also have a fixed neural architecture and specific breakdown patterns.

(4) Modules are employed for certain, basic types of information processing (e.g., shape analysis, color

perception, and face recognition).

(5) Modules provide inputs to nonmodular, central processing – the realm of belief fixation and

practical decision-making, among other things.

(6) Central processing is holistic and so not informationally encapsulated.

According to the massive modularity hypothesis, all information processing is modular.

There is no domain-general information processing.

(1) The human mind is claimed to be a collection of specialized modules, each of which evolved to

solve a specific set of problems encountered by our Pleistocene ancestors.

(2) Examples of these Darwinian modules are the cheater detection module and modules proposed for

folk psychology (theory of mind) and folk physics (intuitive mechanics).

(3) According to the argument from error, domain-general cognitive mechanisms could not have

evolved because there are no domain-general fitness criteria.

(4) According to the argument from statistics and learning, domain-general learning mechanisms

cannot detect statistically recurrent domain-specific patterns (such as the kin selection equation

proposed by W. D. Hamilton).

(5) Both of these arguments can be satisfied with the much weaker claim that there are innate,

domain-specific bodies of knowledge.
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ACT-R is an example of a hybrid architecture that combines both symbolic and

subsymbolic elements.

(1) Knowledge in ACT-R is represented in two different ways – declarative knowledge is represented

in chunks, while procedural knowledge is represented through production rules.

(2) Items of knowledge become available for general information processing when they

appear in one of the buffers. This general information processing is fundamentally symbolic

in character.

(3) In contrast, the processes that determine whether a particular item of knowledge ends up in a

buffer are subsymbolic – equations, for example, that calculate how useful a given production rule

might be in a particular context.

(4) These processes are subsymbolic because they do not exploit or depend upon the internal symbolic

structure of the item of knowledge.

Further Reading

There is a useful introduction to intelligent agents in Russell and Norvig 2009, particularly chapter

2. An earlier version of this chapter (from the book’s first edition) is available in the online

resources. A good review can also be found in Poole and Mackworth 2010. See the online

resources for other helpful collections pertaining to agent architectures.

Fodor’s modularity thesis is presented in his short book The Modularity of Mind (1983).

A summary of the book, together with peer commentaries, was published in the journal Behavioral

and Brain Sciences (Fodor 1985). The summary is reprinted in Bermúdez 2006. For critical

discussion of the modularity of face perception, see Kanwisher, McDermott, and Chun 1997 and

Kanwisher 2000. Cosmides and Tooby have written an online evolutionary psychology primer,

available in the online resources. More recent summaries of Cosmides and Tooby’s research can be

found in Cosmides, Barrett, and Tooby 2010 and Cosmides and Tooby 2013. Their 1994 paper

discussed in the text is reprinted in Bermúdez 2006. It was originally published in Hirschfeld and

Gelman 1994. This influential collection contains a number of other papers arguing for a modular

approach to cognition. There is a useful entry on biological altruism in the online Stanford

Encyclopedia of Philosophy. For Hamilton’s theory of kin selection, see Dawkins 1979 (available in

the online resources).

Pinker 1997 develops a view of the mind that integrates the massive modularity hypothesis

with other areas of cognitive science. Pinker is a particular target of Fodor’s discussion of massive

modularity in Fodor 2000. Pinker responds to Fodor in Pinker 2005 (available in the online

resources).

Carruthers 2006 is a book-length defense of a version of the massive modularity thesis. The

journalMind and Language published a precis of the book (Carruthers 2008b), together with three

commentaries – Machery 2008, Wilson 2008, and Cowie 2008. Carruthers replies in the same issue

(Carruthers 2008a). A good review of modularity research can be found in Barrett and Kurzban
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2006. Also see Richard Samuels’s chapter on massive modularity in Margolis, Samuels, and Stich

2012. The Stanford Encyclopedia of Philosophy also has an entry on modularity.

The homepage for the ACT architecture is the best place to start (see online resources). It

contains a comprehensive bibliography with links to PDF versions of almost every referenced

paper. For a brief overview of the general ACT approach, see Lebiere 2003. For a longer

introduction to ACT-R, see Anderson et al. 2004. To see how ACT-R can be implemented neurally,

see Zylberberg et al. 2011.
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Overview

This chapter explores what the wiring diagram of the mind looks like. This is a trickier question

than it initially appears to be. Neuroanatomy (the study of the anatomical structure of the

brain) is a good place to start, but neuroanatomy can only take us so far. We are looking for a

cognitive wiring diagram. This takes us beyond anatomy, because cognitive functions rarely

map cleanly onto brain areas. Section 9.1 looks in more detail at the theoretical and practical

issues that arise when we start to think about the interplay between structure and function in

the brain.

Many neuroscientists think that we can localize particular cognitive functions in specific brain

areas (or networks of brain areas). Their confidence is in large part due to the existence of powerful

techniques for studying patterns of cognitive activity in the brain. These techniques include

■ EEG (electroencephalography) for measuring ERPs (event-related potentials)

■ PET (positron emission tomography)

■ fMRI (functional magnetic resonance imaging)
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Section 9.2 introduces these techniques and their respective strengths, while the case studies in

Sections 9.3 and 9.4 show how the different techniques can be combined to shed light on the

complex phenomenon of attention.

Neuroimaging techniques do not provide a direct “window” on cognitive functions. They

provide information about blood flow (in the case of PET) or the blood oxygen level dependent

(BOLD) signal (in the case of fMRI). How we get from there to models of cognitive organization

depends upon how we interpret the data. In Section 9.5 we will look at some of the challenges

that this raises.

9.1 Structure and Function in the Brain

The brain has some conspicuous anatomical landmarks. Most obviously, it comes in two

halves – the left hemisphere and the right hemisphere. The division between them goes

lengthwise down the middle of the brain. As we saw in Section 3.2, the cortical surface of

each of these hemispheres is divided into four lobes. Each of the four lobes is thought to be

responsible for a different type of cognitive functioning. The frontal lobe is generally

associated with reasoning, planning, and problem solving, for example. Anatomically

speaking, however, the lobes are distinguished by large-scale topographic features known

as gyri and sulci (singular: gyrus and sulcus).

If you look at a picture of the surface of the brain you will see many bumps and grooves.

The bumps are the gyri and the grooves are the sulci. The sulci are also known as fissures.

Many of these bumps and grooves have names. Some names are purely descriptive. The

parieto-occipital sulcus, for example, separates the parietal lobe from the occipital lobe.

Some of the names are more interesting. The Sylvian sulcus (which is marked in Figure 9.1

as the lateral cerebral sulcus) divides the temporal lobe from the lobe in front of it (the

frontal lobe) and from the lobe above it (the parietal lobe). It is named after Franciscus

Sylvus, who was a seventeenth-century professor of medicine at the University of Leiden in

the Netherlands.

The diagram in Figure 9.1a is drawn from a review article published in Scientific American

in 1970 by the famous Russian neuropsychologist Alexander Luria. It illustrates some of the

most prominent large-scale features of the anatomy of the brain’s surface. My main interest

in reproducing it, however, is to contrast it with the other three diagrams in Figure 9.1.

Each of these depicts one of what Luria thought of as the three main functional networks in

the brain. Luria called these networks “blocks.” They are colored brown in the diagrams.

According to Luria, each block has very different roles and responsibilities. Figure 9.1b is

the most primitive block, made up of the brain stem and the oldest parts of the cortex.

(This would be a good moment to look back at the first few paragraphs of Section 3.2.)

According to Luria, this system regulates how awake and responsive we are. The second

block (in Figure 9.1c) regulates how we code, control, and store information, while the

third block (Figure 9.1d) is responsible for intentions and planning.

The specific details of Luria’s analysis are not particularly important. What he was

reviewing in 1970 is no longer state of the art now. We are looking at Luria’s diagram
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Figure 9.1 Luria’s (1970) diagram of the functional organization of the brain. The top diagram is

anatomical, while the other three depict functional networks. (Adapted from Luria 1970)
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because it clearly illustrates two things. The first is the difference between anatomy and

cognitive function. The diagram in Figure 9.1a is an anatomical diagram. It organizes the

brain in terms of large-scale anatomical features (such as the lobes and the sulci). It divides

the brain into regions, but it has nothing to say about what those regions actually do.

The other three diagrams, however, are not purely anatomical. They mark many of the

same anatomical regions, but they are organized in functional terms. This is particularly

clear in Figures 9.1c and 9.1d, corresponding to Luria’s second and third blocks. Here we

have regions picked out in terms of what they are thought to do (in terms of the cognitive

function that they serve). So, for example, a particular section of the frontal lobe is

identified as the motor region (responsible for planning voluntary movements).

The second thing that we learn from Luria’s diagram is how easy it is to slide from

talking about anatomical areas to talking about functional areas (and vice versa). When we

talk about the Sylvian sulcus we are talking about an anatomical feature of the brain. When

we talk about the motor region, in contrast, we are talking about a region of the brain

identified in terms of its function. But it is very common to have (as we have here)

diagrams and maps of the brain that use both types of label. And in fact, the same area

can have two very different names depending on how we are thinking about it. The

precentral gyrus, for example, is an anatomical feature located just in front of the central

sulcus. It is also called the primary motor cortex, because neuroscientists have discovered

that directly stimulating this area causes various parts of the body to move.

Exploring Anatomical Connectivity

One of the most fundamental principles of neuroscience is the principle of segregation. This

is the idea that the cerebral cortex is divided into segregated areas with distinct neuronal

populations. Neuroscientists still use a classification of anatomical areas in the cerebral

cortex developed by the great German neuroanatomist Korbinian Brodmann in the late

nineteenth and early twentieth century.

Brodmann’s basic proposal was to distinguish different regions in the cerebral cortex in

terms of the types of cell that they contain and how densely those cells occur. To study

how cells are distributed in the cortex, Brodmann used recently discovered techniques for

staining cells. Staining methods are still used by neuroscientists today. They involve

dipping very thin slices of brain tissue into solutions that allow details of cellular structure

to be seen under a microscope. Brodmann used the Nissl stain, developed by the German

neuropathologist Franz Nissl. The Nissl stain turns all cell bodies a bright violet color.

By using the Nissl stain to examine the distribution of different types of neuron across

the cerebral cortex, Brodmann identified over fifty different cortical regions. Figure 9.2

gives two views of the brain with the four lobes and the different Brodmann areas clearly

marked. The top view is a lateral view (from the side) while the lower one is a medial view

(down the middle).

Remarkably, Brodmann’s classification of cortical regions also serves as a basis for

classifying cortical regions according to their function. Here are some examples.
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Figure 9.2 Map of the anatomy of the brain showing the four lobes and the Brodmann areas. The

captions indicate general functional specializations. The top view is a lateral view (from the side),

while the lower one is a medial view (down the middle). (Reproduced courtesy of

www.appliedneuroscience.com)
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■ The primary visual cortex, also known as area V1, is the point of arrival for information

from the retina. In anatomical terms it is Brodmann area 17.

■ Somatosensory information about the body gained through touch and body sense arrives

in a region of the postcentral gyrus known as the primary somatosensory cortex. This is

Brodmann area 3.

■ We have already mentioned the primary motor cortex (the precentral gyrus). This is

Brodmann area 4.

Even from an anatomical point of view, identifying segregated and distinct cortical regions

can only be part of the story. We also need to know how the cortical regions are connected

with each other. This would give an anatomical wiring diagram of the brain – or, to use the

standard terminology, a map of anatomical connectivity.

Exploring anatomical connectivity requires a whole new set of techniques. One very

influential technique is called tract tracing. This involves injecting a marker chemical into a

particular brain region. Typical markers are radioactive amino acids or chemicals such as

horseradish peroxidase (HRP). When the marker is injected near to the body of a nerve cell

it is absorbed by the cell body and then transported along the cell’s axon. Looking to seewhere

the marker ends up allows neuroanatomists to identify where the cell projects to – and doing

this for enough cells allows themtowork out the connections betweendifferent brain regions.

Tract tracing is what is standardly called an invasive technique. It is only possible to

discover where HRP has been transported to by examining sections of the cortex through a

microscope. This cannot be done on living creatures. And so neuroanatomists have pri-

marily worked on the brains of nonhuman animals – primarily macaque monkeys, rats,

and cats. Their results are often represented using connectivity matrices.

Figure 9.3 is an example, from a very influential set of data on the visual system of the

macaque monkey published in 1991 by Daniel J. Felleman and David Van Essen. The brain

regions are abbreviated in a standard way. We can read off the matrix the regions to which

any given region projects. Find the region you are interested in on the first column and

then work your way across. If there is a “1” in the column corresponding to another brain

region, then there is a connection going from the first to the second. If there is a “0” then

no connection has been found. The gaps in the matrix indicate a lack of information.

The same data can be presented in a form that makes it look much more like a wiring

diagram.We see this inFigure 9.4. Thewiringdiagramformatmakes it a little easier to visualize

what is going on, but it doesn’t give quite as much information as the connectivity matrix.

Exercise 9.1 What type of information about anatomical connectivity do we get from a

connectivity matrix but not from a wiring diagram?

Unfortunately, there are important limitations on what we can learn from information

about anatomical connectivity.

■ Anatomical connectivity data are largely derived from animal studies, whereas the brains

that we are really interested in are our own. The information that we have about

anatomical connectivity specifically in humans is largely derived from postmortem studies
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Figure 9.3 A connectivity matrix for the visual system of the macaque monkey. (Adapted from Felleman and Van Essen 1991)



of human brains. Techniques for studying human anatomical connectivity in vivo, such as

diffusion tractography, are being developed, but are still in their infancy.

■ Anatomical wiring diagrams do not carry any information about the direction of

information flow between and across neural regions. There are typically at least as many

feedback connections as feedforward connections.
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Figure 9.4 An anatomical wiring diagram of the visual system of the macaque monkey. (Adapted

from Felleman and Van Essen 1991)
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■ Anatomical connectivity is studied almost completely independently of cognitive

functioning. An anatomical wiring diagram tells us which brain regions are in principle

able to “talk”directly to each other. But it does not tell us anything about howdifferent brain

regions might form circuits or networks to perform particular information-processing tasks.

9.2 Studying Cognitive Functioning: Techniques from
Neuroscience

In addition to the principle of segregation, most neuroscientists also accept a principle of

integration. This is the idea that cognitive functioning involves the coordinated activity of

networks of different brain areas, with different types of task recruiting different networks

of brain areas.

So, in order to make further progress in understanding how cognition works we need to

supplement information about anatomical connectivity with information about what

actually goes on in the brain when it is performing specific cognitive tasks. Neuroscientists

have developed a number of techniques for doing this.

Mapping the Brain’s Electrical Activity: EEG and MEG

When neurons fire they send electrical impulses down their axons. These action potentials

are transmitted to the dendrites of other neurons at synapses. Electrical synapses transmit

electrical signals directly, while chemical synapses transmit chemicals called neurotrans-

mitters. The precise details of how this works are not important for now. Two things are

important. The first is that this electrical activity is a good index of activity in neurons.

What neurons do is fire, and when they fire they generate electricity. The second is that

there is a range of different techniques for measuring this activity.

Neurophysiologists can record the discharge of action potentials in individual neurons

by placing a microelectrode close to the cell being recorded. (For an illustration see

Figure 3.13.) This technique has been used to identify neurons that are sensitive to

particular stimuli. The recent discovery of what are known asmirror neurons is a very good

example. A group of neuroscientists led by Giacomo Rizzolatti in Parma, Italy, have

identified neurons in monkeys that fire both when the monkey performs a specific action

and when it observes that action being performed by an observer. This is illustrated in

Figure 9.5.

To study the brain’s organization and connectivity, however, we need to look at the

electrical activity of populations of neurons, rather than single neurons.

Human encephalography (EEG) is a relatively straightforward tool for studying the

activity of larger populations of neurons, requiring little complicated machinery or

disturbance to the subject. It uses electrodes attached to the skull and wired up to a com-

puter. Each electrode is sensitive to the electrical activity of thousands of neurons, with the

neurons nearest the electrode making the largest contribution to the output signal.

The coordinated activity of these neural populations can be seen in EEGs as oscillatory

waves at different frequencies. These frequencies are typically labeled in terms of bands.
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The bands are named with letters from the Greek alphabet – from alpha through to gamma.

Confusingly, the alpha band is neither the lowest frequency nor the highest. The lowest

frequency activity takes place in the delta band. Delta band activity is seen in very deep

sleep (sometimes called slow wave sleep).

20

10

0

20

10

0

1 sec

Figure 9.5 The results of single-neuron recordings of a mirror neuron in area F5 of the

macaque inferior frontal cortex. The neuron fires both when the monkey grasps food (top)

and when the monkey observes the experimenter grasping the food (bottom). Each horizontal

line in the top diagram represents a single trial and each nick the firing of a neuron.

Neural activity is summed over trials in the two histograms. (Adapted from Iacoboni and

Dapretto 2006)
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In fact, different stages in the sleep cycle are associated with activity in different bands –

and sleep specialists use EEG to identify and study sleep disorders. EEGs can be used for

other forms of medical diagnosis. So, for example, epilepsy is associated with a distinctive,

“spikey” wave, as can be seen in Figure 9.6.

Delta

Theta

Alpha

Beta

Gamma

Name and example Description

Gamma generally ranges between 26 and 70 Hz, centered around 40 Hz.
Gamma waves are thought to signal active exchange of information between
cortical and other regions. They are seen during the conscious state and in REM
dreams (Rapid Eye Movement Sleep). Note that gamma and beta activity may
overlap in their typical frequency ranges, because there is still disagreement
on the exact boundaries between these frequency bands. 

Delta is the slow wave characteristic of deep, unconscious sleep. It is less than
4 Hz, and similar EEG frequencies appear in epileptic seizures and loss of
consciousness, as well as some comatose states. It is therefore thought to
reflect the brain of an unconscious person.
The delta frequency tends to have the highest amplitude and the slowest
frequency. Delta waves increase with decreasing awareness of the physical
world.

Theta activity has a frequency of 3.5 to 7.5 Hz.
Theta waves are thought to involve many neurons firing synchronously. Theta 
rhythms are observed during some sleep states, and in states of quiet focus,
for example meditation. They are also manifested during some short-term
memory tasks, and during memory retrieval.
Theta waves seem to communicate between the hippocampus and neocortex
in memory encoding and retrieval.

Alpha waves range between 7.5 and 13 Hz and arise from synchronous
(in-phase) electrical activity of large groups of neurons. They are also called
Berger’s waves in memory of the founder of EEG.
Alpha waves are predominantly found in scalp recordings over the occipital
lobe during periods of relaxation, with eyes closed but still awake. Conversely
alpha waves are attenuated with open eyes as well as by drowsiness and sleep.

Beta activity is ‘fast’ irregular activity, at low voltage (12–25 Hz).
Beta waves are associated with normal waking consciousness, often active,
busy, or anxious thinking and active concentration.
Beta is usually seen on both sides of the brain in symmetrical distribution
and is most evident frontally. It may be absent or reduced in areas of 
cortical damage.

Figure 9.6 Typical patterns of EEG waves, together with where/when they are typically found.

(From Baars and Gage 2012)
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EEGs are particularly important because they give a reliable way of measuring what are

known as event-related potentials (ERPs). An ERP is the electrical activity provoked by a

specific stimulus. ERPs are important because they have a very fine temporal resolution. In

other words, they are sensitive to very small differences in elapsed time.

EEGs are not the only way of studying the electrical activity of large populations of

neurons. But it is the most widespread technique and (not coincidentally, one imagines)

the least expensive.

The other principal technology is magnetoencephalography (MEG). Magnetoencephalography

measures the same electrical currents as are measured by EEG. It measures them through the

magnetic fields that they produce. This allows a finer spatial resolution than is possible with

EEGs. It is also much less susceptible to distortion due to the skull than EEG. But, on the other

hand, it brings with it all sorts of technical issues. For example, it can only be carried out in a

room specially constructed to block all alien magnetic influences, including the earth’s magnetic

field. MEG is relatively little used in research neuroscience (as opposed to medical diagnosis).

Mapping the Brain’s Blood Flow and Blood Oxygen
Levels: PET and fMRI

We turn now to PET (positron emission tomography) and fMRI (functional magnetic resonance

imaging), which were introduced in Sections 3.4 and 3.5, respectively. Instead of measuring

electrical activity, these two techniques measure blood flow, since more blood flows to a

particular brain region when it is active.

PET measures blood flow directly by tracking the movement of radioactive water. fMRI

measures blood flow indirectly through blood oxygen levels in particular brain regions.

This works because the increased neural activity in those regions does not consume all of

the oxygen in the blood that reaches them. So, the ratio of oxyhemoglobin to deoxyhe-

moglobin increases in areas that see increased blood flow. This gives rise to the BOLD (blood

oxygen level dependent) signal.

PET and fMRI are both much more sensitive to spatial change and variation than to

change and variation over time. In this respect they are very different from EEG and MEG.

Neuroimaging is much better at telling us about how cognitive activity is distributed across

the brain over a period of time than they are at telling us about the precise sequence of

events as information is processed.

This is acceptable, since functional neuroimaging is standardly used to identify net-

works of neural areas involved in carrying out cognitive tasks of a particular kind – those

exploiting short-term memory, for example. This does not require a particularly fine

temporal resolution. It simply requires being able to identify which neural regions are

simultaneously active when the task is being performed. And the spatial resolution has to

be sufficiently fine-grained for the results to be interpretable in terms of standard anatom-

ical maps of the brain. The technology has to have sufficient spatial resolution to be able to

pinpoint, for example, activity in the premotor cortex (Brodmann area 6), or in the

orbitofrontal cortex (Brodmann area 11).

Table 9.1 summarizes some of the key features of these different techniques.
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As the table shows, there is no technique for studying larger populations of neurons that

has both a high temporal resolution and a high spatial resolution. And so, as we’ll see in the

next two sections, neuroscientists have combined techniques in order to gain a more

comprehensive perspective.

As the table shows, there is no technique for studying larger populations of neurons that

has both a high temporal resolution and a high spatial resolution. Nonetheless, neuro-

scientists have combined techniques in order to gain a more comprehensive perspective.

We will illustrate this through two case studies.

9.3 Combining Resources I: The Locus of Selection Problem

Our first case study starts off from the basic fact that we experience the world in a highly

selective way. At any given moment we effectively ignore a huge amount of the infor-

mation that our perceptual systems give us. We saw an example of this in Chapter 1 – the

so-called cocktail party phenomenon. The same holds for vision. In principle, we can see

things that are more or less level with our ears. Yet we are barely aware of much of our so-

called peripheral vision. It is only when something in the periphery “catches our eye” that

we realize quite how far our field of vision extends.

This selectivity is a very basic feature of perception. We only focus on or attend to a small

proportion of what we actually see, hear, touch, and so on. Psychologists label the mech-

anism responsible for this very general phenomenon attention.

In Chapter 1 we looked at Donald Broadbent’s model of attention, in which attention

functions as a selective filter. What the filter lets through depends upon what the cognitive

system as a whole is trying to achieve. In a cocktail party situation, for example, the filter

might be tuned to the sound of a particular individual’s voice.

TABLE 9.1 Comparing techniques for studying connectivity in the brain

DIRECTLY MEASURES

TEMPORAL

RESOLUTION

SPATIAL

RESOLUTION

Single-unit recording Potentials in individual neurons and

very small populations of neurons

High High

EEG

(electroencephalography)

Electrical activity of larger

populations of neurons

High Low

MEG

(magnetoencephalography)

Magnetic fields produced by

electrical activity of larger

populations of neurons

High Low

PET (positron emission

tomography)

Cerebral blood flow in particular

brain regions

Low High

fMRI (functional magnetic

resonance imaging)

Levels of blood oxygen in particular

brain regions

Low High
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On Broadbent’s model attention does its screening relatively early on in perceptual

processing. The selective filter screens out all the sounds that don’t correspond to the voice

of the person I am talking to long before my auditory systems get to work on parsing the

sounds into words and then working out what is being said. His model is what is known as

an early selection model.

Other models claim that attention operates at a much later stage. These are late selection

models. According to late selection models, important parts of perceptual processing are

complete before attention comes into play. In vision, for example, late selection models

hold that attention only comes into play once representations of sensory features (such as

color, shape, and so on) have already been combined into representations of objects and

those objects identified. The late selection approach is taken, for example, in the object-

based model of attention developed by the cognitive psychologist John Duncan in

the 1980s.

Exercise 9.2 Explain in your own words the difference between late selection and early selection

models of attention.

The locus of selection problem is the problem of determining whether attention is an early

selection phenomenon or a late selection phenomenon. To solve it we need a way of

tracking perceptual information processing to identify when attention comes into play.

Combining ERPs and Single-Unit Recordings

The locus of selection problem is at bottom a problem about the temporal organization of

information processing: Does the processing associated with selective attention take place

before or after the processing associated with object recognition. This suggests using EEGs

to measure the ERPs evoked by visual information processing. EEGs have a very high

temporal resolution, sensitive at the level of milliseconds.

Remember that EEG (electroencephalography), is the general technique, while an ERP

(the evoked reaction potential) is what the technique actually measures when it is time-

locked with the onset of a particular stimulus. What we get from an ERP experiment is a

wave that measures the electrical activity in the period of time immediately following the

onset of the stimulus. The time is standardly measured in milliseconds (thousandths of a

second), while the electrical activity is measured in microvolts (millionths of a volt).

We see a typical example in Figure 9.7. The graph displaying the ERP as a number of

spikes and troughs. These are known as the components of the ERP and represent voltage

deflections. The voltage deflections are calculated relative to a prestimulus baseline of

electrical activity – which might, for example, be derived by measuring electrical activity

at the tip of the nose.

WARNING: Please bear in mind a very confusing feature of ERP graphs. The y-axis

represents negative activations above positive ones. This is very counterintuitive because
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it means that, when the line goes up the electrical activity is actually going down! And

vice versa.

The time that elapses between stimulus onset and a particular spike or trough is known

as the latency of the particular component. The components of the ERP for vision have

been well studied. The earliest component is known as the C1 component. It is a negative

component and appears at 50–90 ms after the appearance of the stimulus. There is a

standard labeling for subsequent components. These are labeled either P or N, depending

upon whether they are positive or negative. And they are given a number, which represents

either their position in the ERP or their latency.

The P1 component, for example, is the first positive component, while the P300 is a

positive component that occurs 300 ms (i.e., 0.3 seconds) after the stimulus is detected.

The P300 typically occurs in response to unexpected or novel stimuli. It is often taken as

a sign that higher cognitive processes, such as attention, are involved in processing the

stimulus. The graph in Figure 9.7b has the C1, N1, and P1 components marked. It is also

possible to see the P200 component and a (slightly delayed) P300.

The ERP wave displays an attention effect. Certain components of the wave change

depending upon whether or not the subject is attending to the stimulus. Figure 9.7a

illustrates a typical experiment used to elicit the attention effect. The subject is asked to

attend to one of two boxes in a screen. Stimuli are presented at various places in the screen

and the ERPs are measured both for the case where the stimulus is in the box being

attended to and the case where it is elsewhere.

The results of these experiments are illustrated in Figure 9.7b. The solid line shows the

ERP when subjects are attending and the dotted line when subjects are not attending.

There are important differences in two of the components – together with an important

nondifference in one component. The nondifference first – there is no significant differ-

ence in the C1 component between the attended and the unattended cases. But there are

significant differences in the P1 and N1 components. The P1 component is the first

significant positive component and the N1 the first significant negative component. Both

are larger when the subject is attending to the box in which the stimulus appears.

(a)

Figure 9.7a Common experimental design for neurophysiological studies of attention. The

outline squares are continuously present and mark the two locations at which the solid square can

be flashed. (Courtesy Stephen J. Luck and Michelle A. Ford)
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This suggests that there are two additional bursts of information processing taking place

roughly 100 and 200 ms after stimulus onset when attention is exercised. But how does it

help us to decide whether attention is an early selection phenomenon or a late selection

phenomenon?

The ERP data on their own cannot settle this question. To make progress we need to

triangulate ERP data with what we know about what goes on in different parts of the brain.

As we observed in Section 3.2, neurophysiologists generally accept that (at least in the

visual system of the macaque monkey), object identification exploits the so-called ventral

pathway that begins in V1 (the striate cortex) and then progresses through areas V2 and V4

en route to the inferotemporal cortex. Of these areas, V1 is responsible for processing basic

shape. Visual areas V2 and V4 (which is an extrastriate area) are thought to process more

advanced information about shape, together with information about color, texture, and

so on.

The different areas in the object identification pathway process different types of infor-

mation separately but in parallel. Moreover, the information processing in V1, V2, and V4

is standardly thought to take place upstream of wherever the process of integrating all these

different types of information takes place. In other words, all the information processing in

the early visual areas such as V1, V2, and V4 takes place before the visual system is working

with representations of objects.

This gives a clear criterion for thinking about the locus of selection problem. We said

earlier that if attention is a late selection phenomenon then it only comes into play when

the visual system has generated (and perhaps identified) representations of objects. There-

fore, any evidence that the exercise of attention affects processing in the early visual areas

will be evidence that attention is an early selection phenomenon.

This is why the ERP data are so significant. There is a range of evidence connecting

different components of the ERP wave to processing in different visual areas. The C1

(b)
Attended

+1µV

-100

Ignored

N1

P1

C1 300

-1µV

4000 100 200

Figure 9.7b Example of the occipital ERPs recorded in a paradigm of this nature. Note that the

C1 wave (generated in area V1) shows no attention effect, whereas the P1 and the N1 waves

(generated in extrastriate cortex) are larger for the attended stimuli. (Courtesy Stephen J. Luck and

Michelle A. Ford)
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component, for example, is thought to reflect processing in the striate cortex (V1). Since

the C1 component is constant across both the attended and the unattended conditions, we

can conclude that processing in V1 is not modulated by attention. On the other hand,

however, there is evidence connecting the P1 and N1 components with processing in the

extrastriate cortex (i.e., in areas such as V2 and V4). So, the ERP data do seem to show that

attention affects early visual processing, which supports the early selection rather than the

late selection view.

This is reinforced by single-unit recordings. The diagrams in Figures 9.7c and 9.7d show

the results of making recordings in areas V1 and V4 while monkeys are performing a task

similar to that depicted in Figure 9.7a. As the graphs show, there is no difference between
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Figure 9.7c Single-unit responses from area V4 in a similar paradigm. Note that the response is

larger for attended compared with ignored stimuli. (Courtesy Stephen J. Luck and Michelle A. Ford)
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Figure 9.7d Single-unit responses from area V1 showing no effect of attention. (Courtesy

Stephen J. Luck and Michelle A. Ford)
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levels of activity in V1 across the attended and unattended conditions. But there are

significant differences in V4. This is certainly consistent with the hypothesis that attention

is an early selection phenomenon.

There is a clear “take-home message” here. Although there are no techniques or tech-

nologies for studying cognitive activity directly and although each of the techniques has

significant limitations, we can overcome many of the limitations by combining and

triangulating the different techniques. The high temporal resolution of EEG complements

the high spatial resolution of imaging technologies such as PET. And predictions from

studies of humans using these techniques can be calibrated with electrophysiological

studies on monkeys.

9.4 Combining Resources II: Networks for Attention

Attention raises many important questions besides the locus of selection question. For

example:

■ Which brain areas are involved in attention?

■ How is attention related to other cognitive processes, such as memory and action-

planning?

■ How does the brain direct attention to particular objects and particular places?

We will be exploring these questions in this section. This will allow us to see some of the

power of experiments using functional neuroimaging – and also, to continue one of the

themes of this chapter, to explore how neuroimaging data can be calibrated and reinforced

with the results of electrophysiological experiments.

There are different varieties of attention. We can attend to one object among others – to

the unfamiliar bird in the flock of sparrows, for example. Or we can attend to one part of an

object rather than another – to the bird’s head or beak rather than its wings. Alternatively,

we can attend to places – to the place where we expect the bird to fly to next.

The experiments that we looked at in the previous section focused on the last of these

types of visual attention. Subjects were asked to focus on a particular location on the screen

(marked by a box) – a location at which a stimulus might or might not appear. And it is

what we will be focusing on in this section also. Neuroscientists and psychologists term it

spatially selective attention (or visuospatial attention).

So, which brain areas are involved in spatially selective attention? Studies in the 1990s

identified a network of cortical areas implicated in visuospatial attention. The specific tasks

varied, but all of the experiments involved subjects directing attention to stimuli in the

periphery of their visual field without moving their eyes. This is very important. Typically,

we attend to different objects in the visual field by making very quick (and unconscious)

eye movements known as saccadic eye movements. Experimenters studying visuospatial

attention, however, are interested in attention as a mechanism that operates independ-

ently of eye movements – a mechanism that can be directed at different peripheral areas

while gaze is fixated on a central point. Researchers call this covert attention.
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Figure 9.8 summarizes a number of these studies. It identifies a network of areas in the

parietal and frontal areas that are active during tasks that require subjects to direct covert

attention to peripheral areas in the visual field. The existence of this frontoparietal cortical

network is widely accepted among researchers into attention and has been confirmed by

retrospective analyses of PET and fMRI data.

But simply identifying a network of brain areas involved in visuospatial attention does

not in itself tell us much about how attention works. It does not tell us about how attention

is related to other cognitive processes, such as memory or action-planning. And it does not

tell us anything about how exactly the brain directs attention to particular locations in

space. We turn to those questions now.

Corbetta 93

Corbetta 95

Gitelman 96

Vandenberghe 96

Vandenberghe 97

Nobre 97

Woldorff 97

PoCeS

PrCeS

IPS

PoCeS

PrCeS
IPS

Figure 9.8 Frontoparietal cortical network during peripheral visual attention. Common regions of

activation across studies include the intraparietal (IPS), postcentral (PoCeS), and precentral

sulcus (PrCeS). (Adapted from Gazzaniga 2000)
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Two Hypotheses about Visuospatial Attention

There are two dominant hypotheses about how visuospatial attention works.

The first hypothesis is that visuospatial attention exploits certain memory

mechanisms. The basic idea here is that, in order to attend to a specific location, we need

actively to remember that location. If this is right, then we would expect brain

networks associated with spatial working memory to be active during tasks that involve

attention.

The second hypothesis is that there are very close connections between directing

attention to a particular location and preparing to move to that location – even in the case

of covert attention, where the intention to move is the intention to move the eyes. The

prediction generated by this hypothesis is that brain areas associated with motor planning

will be active in tasks that exploit visuospatial attention.

The two hypotheses are not necessarily exclusive. This is fortunate, because there is

considerable experimental support for both of them.

Some of the evidence comes from single-neuron studies on monkeys. Carol Colby and

her collaborators made recordings from an area in the parietal cortex known as LIP while

monkeys were carrying out a delayed saccade task. LIP (the lateral intraparietal area – which

we looked at in a different context in Section 7.3) is widely thought to play an important

role in short-term memory of spatial locations.

In an ordinary saccade task the monkeys are trained to make a saccade (i.e., quickly

move both eyes) from a central fixation point to a stimulus as soon as the stimulus appears.

In a delayed saccade task the monkeys are trained not to make the saccade until the

fixation point disappears – by which time the stimulus has disappeared (see Figure 9.9).

When the fixation point disappears they then have to make a saccade to the location where

the stimulus originally appeared.

Success on the delayed saccade task requires the monkeys to remember where the

stimulus appeared if they are to make a successful saccade. This type of short-term memory

about spatial location is typically called spatial working memory.

Target

Target

Fix

Delay Saccade

Figure 9.9 An illustration of a typical delayed saccade task. The monkeys are trained to withhold

their saccade to the visual target until the fixation point disappears. Note that the head does not

move during the task. (From White and Snyder 2007)
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It turns out that the firing rates of neurons in LIP go up both when monkeys are

performing delayed saccade tasks (and so exercising spatial working memory) and when

they are carrying out peripheral attention tasks such as those discussed in the previous

section.

This electrophysiological evidence is backed upby awide range of neuroimaging studies on

humans. Both PET and fMRI studies have shown significant overlap between the brain areas

activated in visuospatial attention tasks and those active during tasks that require subjects to

store and manipulate in working memory information about spatial locations. The results of

these studies are depicted in the two diagrams on the left-hand side in Figure 9.10.

These diagrams show that, while there seem to be separate cortical networks for visuo-

spatial attention and spatial working memory, these networks overlap very significantly in

the parietal cortex. This is highly consistent with the results from the electrophysiological

experiments.

Turning now to the relation between visuospatial attention and preparatory motor

responses, the two diagrams on the right-hand side of Figure 9.10 report cross-experiment

analyses. The experiments reported here all explored the relation between covert attention

and saccadic eye movements. The diagrams superimpose the cortical networks thought to

be involved in visuospatial attention onto the cortical networks implicated in saccadic eye

movements.

As an illustration, Maurizio Corbetta of Washington University in St. Louis scanned

subjects both during conditions that required them to shift attention while maintaining

their gaze fixed on a fixation point and during conditions in which gaze and attention

shifted simultaneously. As the diagrams show, there is significant overlap across the covert

attention and the saccadic eye movement tasks both in the parietal and in the precentral

region (where the overlap is much stronger than in the working memory experiments).

This discussion of visuospatial attention illustrates an important methodological lesson.

Progress in this area depends upon combining and calibrating what is learned from each of

these techniques. We do not have any direct measures of cognitive activities such as

visuospatial attention. But we do have the next best thing, which is a wide range of indirect

measures. Single-unit recordings, PET, fMRI, and EEG all give us very different perspectives

on visuospatial attention. We can use some techniques to compensate for the weaknesses

of others. And we have powerful tools for cross-checking and integrating information from

different sources. We have seen how this works in the case of visuospatial attention. This is

an excellent case study in how neuroscientists are moving toward the goal of providing a

cognitive wiring diagram of the brain.

9.5 From Data to Maps: Problems and Pitfalls

Neuroimaging has yielded unparalleled insight into the structure and organization of the

mind – perhaps more so than anything else in the neuroscientist’s tool kit. But it is a tool

that needs to be used with caution. Neuroimaging is not a direct picture of cognitive

activity. It is easy to be seduced by the brightly colored images that emerge from software
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packages for interpreting neuroimaging data. These images look very much like maps of

the brain thinking. And so it is easy to think that neuroimaging gives us a “window on the

mind.” In this section we will see why we need to be much more cautious.

From Blood Flow to Cognition?

Neuroimaging only measures cognitive activity indirectly. FMRI measures the BOLD signal,

while PET measures cerebral blood flow. But very little is known about how what we can

Attention Working Memory

Attention and Working Memory

Attention Eye Movement

Attention and Eye Movement

IPS

PoCeS PrCeS

PFCx

Figure 9.10 Peripheral attention versus spatial working memory versus saccadic eye movement

across studies. Left: Regions active for peripheral attention (red), regions active for spatial working

memory (blue), and regions of overlap (yellow). Note the striking overlap in parietal cortex, partial

overlap in precentral region, and exclusive activation of prefrontal cortex (PFCx) for spatial working

memory. Right: Comparison between peripheral attention (red) and saccadic eye movements

(green). Note the strong overlap (magenta) in both parietal and precentral region. There is no

activation in prefrontal cortex. (Adapted from Gazzaniga 2000)
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observe directly (the BOLD signal, for example) is connected to what we are trying to

measure indirectly (information processing in the brain). As we saw in Section 3.6, there is

a lively debate within neuroscience about the neural correlates of the BOLD signal.

Researchers are calibrating fMRI data with electrophysiological techniques in order to try

to work out whether the BOLD signal is correlated with the firing rates of populations of

neurons, or whether it is correlated with the local field potentials (which are thought to

reflect the inputs to neurons, rather than their outputs). We looked at some experimental

evidence (from Logothetis and his collaborators) that seems to point to the second

possibility.

But even if we had a conclusive answer to this question, we would still be a long way

from a clear picture of the relation between variation in the BOLD signal and information

processing in the brain. This is because we do not have any generally accepted models of

how populations of neurons process information in particular brain areas. One illustration

of this is that the BOLD signal gives us no indication whether the activity it measures is

excitatory or inhibitory.

Noise in the System?

Neuroimaging’s great strength is its spatial resolution, but this comes at a cost.

The basic spatial unit in fMRI is the voxel. This is a three-dimensional version of a

pixel (the name is a combination of the words “volume” and “pixel”). The basic unit of

data obtained from fMRI is the BOLD signal in each voxel. The spatial resolution is

directly correlated with the size of the voxels – the smaller the voxel, the higher the

spatial resolution. The problem, though, is that the strength of the signal is directly

correlated with the size of the voxel – the smaller the voxel, the lower the signal

strength.

For some brain areas, particularly those involving basic perceptual processing or simple

motor behaviors (such as finger tapping), experimenters can design tasks that elicit strong

signals even when the voxel size is small. Things are not so straightforward, however, for

more complex types of processing – particularly those performed by distributed networks

of neural areas. Here it is often necessary to increase the voxel size in order to capture

smaller fluctuations in the BOLD signal. Unsurprisingly, this decreases the spatial reso-

lution. But it also has a less expected consequence.

Increasing the voxel size increases the range of different types of brain tissue occurring

in each voxel. When the voxel includes extraneous material, such as white matter or

cerebrospinal fluid, this can distort the signal, giving rise to what are known as partial

volume effects. It can also happen that a single voxel contains more than one cell type,

whereas neuroimaging data are standardly interpreted on the tacit assumption that voxels

are homogeneous.

There are other ways in which noise can get into the system. Since everybody’s brain is

subtly different, meaningful comparisons across different subjects depend upon the data

being normalized – that is, the data from each subject need to be reinterpreted on a brain

atlas that uses a common coordinate system, or what is known as a stereotactic map. This
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requires very complicated statistical techniques, which themselves may introduce distor-

tion in the data.

And there are many different brain atlases, such as the Talairach–Tournoux atlas, the

MNI atlas from the Montreal Institute of Neurology, and the Population-Average, Land-

mark and Surface-Based (PALS) atlas developed by David Van Essen at Washington Univer-

sity in St. Louis. Since different research groups often use a different atlas, this canmake the

business of comparing and contrasting different studies a tricky undertaking.

Functional Connectivity versus Effective Connectivity

Neuroimaging helps us to understand the connectivity of the brain. But the wiring diagram

that we get from fMRI and PET is still not quite the kind of diagram that we are looking for.

Neither PET nor fMRI tells us anything directly about how information flows through

the brain.

A single experiment can tell us which brain areas are simultaneously active while

subjects are performing a particular task, but it does not tell us, for example, about the

order in which the areas are active. The diagrams that present the results of neuroimaging

experiments only show which areas “light up together.” They identify a network of areas

that are simultaneously active when certain tasks are performed. But they really only

identify correlations between the activity levels of different brain areas.

For this reason, neuroimagers distinguish functional connectivity from effective connectiv-

ity. Functional connectivity is a statistical notion. It is standardly defined in terms of

statistical correlations between levels of activity in physically separate parts of the brain.

But to get a wiring diagram of how the brain works as an information-processing

machine, we really need what neuroscientists call effective connectivity. Effective connectiv-

ity is a measure of how neural systems actually interact. Effective connectivity captures the

idea that information processing is a causal process. Information flows through different

brain areas in a particular order. What happens to the information at earlier stages affects

how it is processed at later stages.

Exercise 9.3 Explain in your own words the distinction between anatomical, functional, and

effective connectivity.

Neuroimaging ismuchbetter at tellingus about functional connectivity thanabout effective

connectivity. PET and fMRI are tools specialized for studying correlation, not causation.

Certainly, there are ways of deriving conclusions about effective connectivity from

neuroimaging data. For example, one can design a series of experiments in a way that

yields information about the flow of information. We looked at a very nice example of this

back in Section 3.4. Steve Petersen and his collaborators were able to draw significant

conclusions about the stages of lexical processing from a series of PET experiments using

the paired-subtraction paradigm. The model that they developed is plainly a contribution

to our understanding of the effective connectivity of the brain.
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Exercise 9.4 Look back at the lexical processing experiments described in Section 3.4 and

explain in your own words how their experimental design overcomes some of the problems raised

by the distinction between functional and effective connectivity.

And, as I have been stressing throughout this chapter, neuroimaging results can always

be calibrated and triangulated with other tools and techniques, such as EEG and electro-

physiology. Our discussion of the locus of selection problem showed how data from

neuroimaging, EEG, and electrophysiology can be combined to develop a model of the

effective connectivity of covert attention.

Nonetheless, we do have to be careful in how we interpret the results of neuroimaging

experiments. In particular, we need to be very careful not to interpret experiments as

telling us about effective connectivity when they are really only telling us about functional

connectivity. We must be very careful not to draw conclusions about the causal relations

between brain areas and how information flows between them from data that only tell us

about correlations between BOLD signal levels in those areas.

Summary

This chapter has looked at how cognitive neuroscience can help us to construct a wiring diagram for

the mind. We began by highlighting the complex relations between functional structure and

anatomical structure in the brain and then looked at some of the techniques for tracing anatomical

connections between different brain areas. Completely different tools are required to move from

anatomical connectivity to functional connectivity. We looked at various techniques for mapping the

brain through measuring electrical activity and blood flow and blood oxygen levels. These

techniques all operate at different degrees of temporal and spatial resolution. As we saw in two case

studies, each having to dowith a different aspect of the complex phenomenon of attention, mapping

the functional structure of the brain requires combining and calibrating different techniques. At the

end of the chapter we reviewed some of the pitfalls in interpreting neuroimaging data.

Checklist

It is a basic principle of neuroscience that the cerebral cortex is divided into segregated

areas with distinct neuronal populations (the principle of segregation).

(1) These different regions are distinguished in terms of the types of cell they contain and the density

of those cells. This can be studied using staining techniques.

(2) This anatomical classification of neural areas can serve as a basis for classifying cortical regions

according to their function.

(3) Neuroscientists can study anatomical connectivity (i.e., develop an anatomical wiring diagram of

the brain) by using techniques such as tract tracing or diffusion tractography.
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(4) Most of the evidence comes from animal studies. Neuroscientists have developed well worked out

models of anatomical connectivity in macaque monkeys, rats, and cats.

Neuroscientists also adopt the principle of integration – that cognitive functioning

involves the coordinated activity of networks of different brain areas.

(1) Identifying these networks requires going beyond anatomical activity by studying what goes on in

the brain when it is performing particular tasks.

(2) Some of the techniques for studying the organization of the mind focus on the brain’s electrical

activity. These include electrophysiology, EEG, and MEG.

(3) These techniques all have high temporal resolution – particularly EEG when it is used to measure

ERPs. But the spatial resolution is lower (except for electrophysiology using microelectrodes).

(4) Other techniques measure blood flow (PET) and levels of blood oxygen (fMRI). These techniques

have high spatial resolution, but lower temporal resolution.

The locus of selection problem is the problem of determining whether attention operates

early in perceptual processing, or upon representations of objects. It provides a good

illustration of how neuroscientists can combine different techniques.

(1) The problem has been studied using EEG to measure ERPs. Attentional effects appear relatively

early in the ERP wave following the presentation of a visual stimulus.

(2) These results can be calibrated with PET studies mapping stages in the ERP wave onto processing

in particular brain areas. This calibration reveals attentional effects in areas such as V2 and V4,

which carry out very basic processing of perceptual features.

(3) This resolution of the locus of selection problem seems to be confirmed by single-unit recordings in

monkeys.

Neuroimaging techniques can help identify the neural circuits responsible for

attention.

(1) Preliminary evidence from brain-damaged patients (e.g., with hemispatial neglect) points to the

involvement of frontal and parietal areas in visuospatial attention.

(2) This has been confirmed by many experiments on covert attention using PET and fMRI.

(3) PET and fMRI experiments on humans, together with single-neuron experiments on monkeys, have

shown that tasks involving visuospatial attention also generate activation in brain networks

responsible for planning motor behavior and for spatial working memory.

The discussion of attention shows that neuroimaging is a very powerful tool for studying

cognition. It is not a “window on the mind,” however, and neuroimaging data should be

interpreted with caution.

(1) Neuroimaging techniques can only measure cognitive activity indirectly. PET measures blood flow

and fMRI measures the BOLD signal. There is a controversy in neuroscience about what type of

neural activity is correlated with the BOLD signal (see Section 3.6) – and no worked out theory

about how that neural activity functions to process information.

(2) There are many opportunities for noise to get into the system in neuroimaging experiments. Partial

volume effects can occur when the voxel size is large, and distortions can occur when data are

being normalized to allow comparison across subjects.
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(3) Neuroimaging techniques are much better at telling us about functional connectivity (correlations

between activation levels in different brain areas as a task is performed) than about effective

connectivity (how information flows between different brain areas and how they influence each other).

Further Reading

The explosion of interest in cognitive neuroscience in the last couple of decades has generated a huge

literature. For keeping up to date with contemporary research, the journal Trends in Cognitive Sciences

regularly contains accessible survey articles. Authoritative review articles on most of the key topics

studied by cognitive neuroscientists can be found in the fifth edition of The Cognitive Neurosciences,

edited by Michael Gazzaniga and George Mangun (2014). The four earlier editions (Gazzaniga 1995,

2000, 2004, 2009) also contain much useful material. Gazzaniga is one of the authors of an influential

textbook on cognitive neuroscience (Gazzaniga, Ivry, and Mangun 2013). Chapter 3 is a useful

introduction to the methods of cognitive neuroscience. Also see Baars and Gage 2010.

Zeki 1978 was one of the first papers to identify functional specialization in the primate visual

system. David Van Essen’s work is accessibly presented in Van Essen and Gallant 1994. The much-

cited paper discussed in the text is Felleman and Van Essen 1991. Reviews of other classic work can

be found in Colby and Goldberg 1999 and Melcher and Colby 2008. Orban, Van Essen, and Vanduffel

2004 is an interesting discussion of the challenges in comparing the neurobiology of cognitive

function across humans and macaque monkeys. Also see Passingham 2009. An interesting trend in

recent discussions of anatomical connectivity has been the use of mathematical tools from graph

theory – in particular the idea of small-world networks. There is a very useful introduction in Bassett

and Bullmore 2006. See Minati et al. 2013 for a more up-to-date review. Jirsa and McIntosh 2007 is a

collection of surveys of different aspects of neural connectivity. For article-length surveys, see

Ramnani et al. 2004, Bullmore and Sporns 2009, and Friston 2011. Bressler et al. 2008 uses Granger

causality to explore effective connectivity in the neural basis of visual-spatial attention. For more on

Granger causality, see Deshpande and Hu 2012 and Friston et al. 2013.

There has been much discussion of the pitfalls and advantages of using neuroimaging

techniques to study cognitive function in the human mind. In addition to research on the neural

basis of the BOLD signal discussed in Chapter 3 (see the references there), researchers have

focused on the methodology of inferring cognitive function from selective patterns of activation.

See, for example, Henson 2006 and Poldrack 2006. For a review of the state of fMRI at the time

from a leading researcher, see Logothetis 2008. Also see Ashby 2011, Charpac and Stefanovic

2012, Machery 2012, and Poldrack, Mumford, and Nichols 2011. Poldrack 2018 is a book-length

survey of the power and pitfalls of neuroimaging.

For surveys of research into selective attention, see Hopfinger, Luck, and Hillyard 2004 and

Thigpen and Keil 2017. Experimental work reported in Section 9.3 is described more fully in Luck

and Ford 1998. Stephen Luck is the author of an important textbook on ERP techniques (Luck

2005). The introductory chapter can be downloaded from the online resources. See also his

coedited volume Luck and Kappenman 2011.

Humphreys, Duncan, and Treisman 1999 contains many useful papers on the psychology and

neuroscience of attention, as does Posner 2004. For more details of the findings discussed in

Section 9.4, see Chelazzi and Corbetta 2000. Other good reviews on a wide variety of attention

phenomena can be found in chapters 8 and 10 of Baars and Gage 2010 as well as in Carrasco

2011, Chun, Golomb, and Turk-Browne 2011, Posner 2017, and Carrasco 2018.
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Overview

Language is a highly sophisticated cognitive achievement. Without it our cognitive, emotional, and

social lives would be immeasurably impoverished. And it is a truly remarkable fact that almost all

human children manage to arrive at more or less the same level of linguistic comprehension and

language use. Unsurprisingly, cognitive scientists have devoted an enormous amount of research

to trying to understand how languages are learned. This chapter looks at language learning from

three of the theoretical perspectives discussed in earlier chapters:

■ The language of thought hypothesis (a version of the physical symbol systems hypothesis)

■ Connectionist neural networks

■ Probabilistic Bayesian models

Section 10.1 introduces some of the basic theoretical challenges in explaining how we understand

and learn languages. Since language is a paradigmatically rule-governed activity, it can seem very

plausible to conceptualize linguistic understanding as a matter of deploying linguistic rules. This

raises the question of where knowledge of the rules comes from. Answering that question is an

important part of explaining how languages are learned.

We look at one answer to that question in Section 10.2. According to Jerry Fodor, young

children learn linguistic rules by a process of hypothesis formation and testing. This process is itself

a linguistic activity. According to Fodor, though, it cannot be carried out in a natural language. He
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thinks that it takes place in the language of thought and he draws the natural conclusion that the

language of thought must be innate.

Section 10.3 explores the very different connectionist approach, which uses neural networks to

model how languages might be learned without explicitly representing rules. We look at how

neural networks can be trained to learn the past tense of English verbs, both regular and irregular.

As we’ll see, the learning trajectory of these networks bears striking resemblances to the learning

trajectory of human infants coming to terms with the complexities of verbs in English.

Like the connectionist approach, the Bayesian models that we consider in Section 10.4 have a

positive account to offer of how languages are actually learned, often explicitly setting themselves

against nativist or innatist accounts. Bayesians think that arguments for innatism about language

have significantly underestimated how much can be learned through sensitivity to statistical

regularities and through applying the type of Bayesian principles that we looked at in Chapter 7.

We will look at three different examples of this general approach.

10.1 Language and Rules

In many ways, speaking and understanding a natural language is the paradigm of a rule-

governed activity. At a most basic level, every language is governed by grammatical rules.

These rules, painfully familiar to anyone who has tried to learn a second language, govern

how words can be put together to form meaningful sentences. But grammatical rules are

only the tip of the iceberg. Linguists devote much of their time to trying to make explicit

much more fundamental rules that govern how languages work. (These additional rules are

more fundamental in the sense that they are supposed to apply to all languages, irrespect-

ive of the particular grammar of the language.)

Back in Section 1.3 we looked briefly at the version of transformational grammar

proposed by Noam Chomsky in the 1950s. In effect, what Chomsky was proposing were

rules that governed how a sentence with one type of grammatical structure could be

legitimately transformed into a sentence with a different grammatical structure but a

similar meaning.

The example we looked at there was the pair of sentences “John has hit the ball” and

“The ball has been hit by John.” Here we have two sentences with very different surface

grammatical structures, but that convey similar messages in virtue of having the same deep

(or phrase) structure. Chomsky’s insight was that we can understand what is common to

these sentences in terms of the rules that allow one to be transformed into the other. These

are the transformational rules. Chomsky’s view on what these rules actually are has

changed many times over the years, but he has never abandoned the basic idea that the

deep structure of language is governed by a body of basic rules.

The rule-governed nature of language makes thinking about language a very interesting

test case for comparing and contrasting the different models of information processing that

we looked at in Part II. These models take very different perspectives on the role of rules. As

we saw in Chapter 4, the basic idea behind the physical symbol system hypothesis is that
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information processing is a matter of manipulating physical symbol structures according to

rules that are explicitly represented within the system. In contrast, in Chapter 5 we learned

that it is not really possible to distinguish rules and representations in artificial neural

networks (apart from the algorithm that governs how the network updates its activation

levels). Information processing in artificial neural networks does not seem to involve rule-

governed symbol manipulation. Nor, as we saw in Chapter 7, do Bayesian models explicitly

encode rules (besides those required to manipulate probabilities and utilities).

Still, the fact that languages are governed by rules does not automatically mean that the

information processing involved in understanding and learning languages has to involve

manipulating symbol structures according to rules. If we are to arrive at that conclusion it

will have to be through some combination of theoretical argument and empirical evidence.

We turn now to some of the theoretical reasons that have been given for thinking that the

physical symbol system hypothesis (particularly in its language of thought incarnation) is

the only way of making sense of the complex phenomenon of linguistic comprehension

and language learning. And then, in the rest of the chapter, we will test the power of

those arguments by looking at neural network and Bayesian models of specific aspects of

language learning.

Understanding a Language and Learning a Language

What is it to understand a language? In a very general sense, there are two different

dimensions to linguistic comprehension. One dimension is understanding what words

mean. There is no language without vocabulary. But words on their own are not much use.

The basic unit of communication is not the word, but rather the sentence. The logician and

philosopher Gottlob Frege famously remarked that only in the context of a sentence do

words have meaning. This takes us to the rules that govern how words can be put together

to form meaningful sentences. As we have already seen, these rules are likely to fall into

two groups. On the one hand there are the rules that tell us which combinations of words

are grammatical. On the other there are the rules that govern the deep structure of

language.

So, understanding a language is partly a matter of understanding what words mean, and

partly a matter of understanding how words can be combined into sentences. What does

this understanding consist in? The default hypothesis is that understanding a language is

fundamentally a matter of mastering the relevant rules. This applies to the vocabulary of a

language no less than to its grammar and deep structure. We can think of understanding

the meaning of a word in terms of mastery of the rule that governs its application – the rule,

for example, that the word “dog” refers to four-legged animals of the canine family and the

rule that the word “square” applies to four-sided shapes with sides of equal size and each

corner at an angle of 90 degrees.

The default hypothesis does not, however, tell us very much. Everything depends on

how we think about mastering a rule. At one extreme is the view that there is no more

to mastering a linguistic rule than being able to use words in accordance with the rule.
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There is no need for competent language users to represent the rule in any way. All they

need to be able to do is to distinguish applications of the word that fit the rule

from applications that do not. This is a very minimalist conception of linguistic under-

standing, associated with some of the followers of the philosopher Ludwig Wittgenstein. It

makes linguistic understanding much more of a practical ability than a theoretical

achievement.

Many cognitive scientists, in contrast, think that this way of thinking about mastery

of rules is far too weak. After all, the rock that falls in accordance with Newton ’s law of

gravity cannot in any sense be said to have mastered that law. Mastering linguistic rules

certainly requires using words in accordance with the rule, but it is not just a practical

ability. Many theorists take the view that we cannot take linguistic abilities as given.

They have to be explained in some way. And one explanation many have found

plausible is that language users are capable of using words in accordance with linguistic

rules because they represent those rules. These representations are thought to guide

the language user’s use of language. Language users use words in accordance with the

rule because they somehow manage to compare possible sentences with their internal-

ized representations of the rules. This is the other extreme. It makes linguistic under-

standing much more of a theoretical achievement than a practical ability – or rather, it

takes linguistic understanding to be a practical ability grounded in a theoretical

achievement.

So, the default hypothesis that linguistic understanding consists in mastery of linguistic

rules can be understood in many different ways, depending on where one stands in

relation to these two extremes. And this has significant implications for how one thinks

about the information processing involved in understanding and using a language. The

more importance one attaches to the explicit representation of rules, the more likely one is

to think that this information processing must be understood through the physical symbol

system hypothesis. This is because the physical symbol system hypothesis allows rules to

be explicitly represented within the system.

Moreover, how one thinks about linguistic understanding has direct implications for

how one thinks about language learning. The end point of language learning, after all, is

linguistic understanding. This is why accounts of what it is to understand a language and

what it is to learn a language tend to go hand in hand. We will be exploring this interde-

pendence in the next few sections. In particular, we will be looking at issues of innatism or

nativism (terms that I’ll use interchangeably). Some accounts of linguistic understanding

have the consequence that aspects of language must be innate, because they seem in

principle to be incapable of being learned by young children, given the limited resources

and evidence that children have.

We will look at one example of this type of theory in the next section, where we

consider Fodor’s argument that language learning requires an innate language of thought.

And then in Sections 10.3 and 10.4 we will look at two prominent anti-innatist

approaches – connectionist models of language in Section 10.3 and then Bayesian

approaches in Section 10.4.
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10.2 Language Learning and the Language of Thought:
Fodor’s Argument

This section examines a powerful line of argument working backward from a strong

conception of what it is to master linguistic rules to the conclusion that we should think

about language learning in terms of the physical symbol system model – and, in particular,

in terms of the language of thought hypothesis. This argument is due to the philosopher

Jerry Fodor, although its basic thrust is, I think, one that many cognitive scientists would

endorse and support.

Fodor starts off with a strong version of the rule-based conception of language learning.

He thinks of the process of acquiring a language as a lengthy process of mastering the

appropriate rules, starting with the simplest rules governing the meaning of everyday

words, moving on to the simpler syntactic rules governing the formation of sentences,

and then finally arriving at complex rules such as those allowing sentences to be embedded

within further sentences and the complex transformational rules discussed by Chomsky

and other theoretical linguists.

How does Fodor get from the rule-based conception of language learning to the exist-

ence of a language of thought? His argument is in his book The Language of Thought. It starts

off from a particular way of thinking about the rules governing what words mean.

According to Fodor these rules are what he calls truth rules. They are called truth rules

because they spell out how words contribute to determining what it is for sentences in

which they feature to be true. Mastering truth rules may not be all that there is to

understanding a language. But Fodor is emphatic that we will not be able to understand

a language without mastering truth rules. Truth rules may not be sufficient, but they are

certainly necessary (he claims).

Let us take a very simple sentence to illustrate how truth rules work. Consider, for

example, the sentence “Felicia is tall.” This sentence is what logicians call an atomic

sentence. It is made up simply of a proper name (“Felicia”) and a predicate (“___ is tall,”

where the gap indicates that it needs to be “completed” by a name of some sort). Proper

names are names of individuals and predicates are names of properties. And so, this gives us

a very straightforward way of thinking about what makes an atomic sentence such as

“Felicia is tall” true. The sentence is true just if the individual named by the proper name

(i.e., Felicia) does indeed have the property named by the predicate (i.e., the property of

being tall). So, the atomic sentence “Felicia is tall” is true just if Felicia is tall. It is standard

to call this the truth condition of the sentence.

You may well think, though, that the truth condition cannot be much help to us in

thinking about what it is to understand the sentence “Felicia is tall,” or about how one

might learn how to use the expressions “Felicia” and “___ is tall.” Here is the truth

condition:

TC “Felicia is tall” is true just if Felicia is tall
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Surely, you might say, someone can only understand the truth condition (TC) if they

already understand the sentence “Felicia is tall” (because this very sentence features in the

truth condition, both inside and outside quotation marks). But then the truth condition

can only be intelligible to someone who already understands the expressions “Felicia”

and “___ is tall.” It cannot help us to make sense of how someone can learn to use those

expressions.

This is why Fodor thinks that we need something more than truth conditions such as TC

in order to make sense of linguistic comprehension and language learning. We need rules

that will tell us which individual the name “Felicia” refers to, and which property is named

by the predicate “___ is tall.” If these rules are to be learnable then they must be stated in

terms of expressions that the language user is already familiar with. In fact, we really need

something like the following rule.

TC* “Felicia is tall” is true just if X is G

Here “X” stands for another name for Felicia – one that the language user already

understands (perhaps “X” might be “George’s sister”). Likewise “G” stands for another

way of naming the property of being tall (perhaps “G” might be “greater than average in

height”). This is what Fodor calls a truth rule.

Exercise 10.1 Explain in your own words the difference between the truth condition TC and the

truth rule TC*.

So, putting all this together, Fodor argues that learning a language has to involve

learning truth rules. He thinks that this places some very fundamental constraints on

any information-processing account of language learning. Learning a truth rule such as

TC* is, he thinks, a matter of forming hypotheses about what the expressions “Felicia” and

“___ is tall” mean. These hypotheses are then tested against further linguistic data and

revised if necessary. Learning that George has no sisters, for example, would force me to

revise my first version of the Felicia truth rule.

This is where the language of thought is required, Fodor argues. Learning a public

language such as English, even if it is your first language, requires you to formulate, test,

and revise hypotheses about the truth rules governing individual words. These hypotheses

have to be formulated in some language. A truth rule is, after all, just a sentence. But which

language are truth rules formulated in?

Fodor thinks that it cannot be the language being learned. You cannot use the language

that you are learning to learn that language. That would be pulling yourself up by your own

bootstraps. And since Fodor takes his account to apply to children learning their first

language no less than to people learning a second language, the language cannot be any

sort of public language. It can only be the language of thought, as described in Chapter 4.

That opens up the question: How is the language of thought itself learned? The short

answer is that it cannot be learned. Since it is a language, the process of learning it would

have to involve formulating hypotheses about truth rules (among other things). But

Fodor is adamant that those hypotheses can only be formulated in the language of
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thought. So – you would need to possess a language of thought in order to learn it. He

draws the inevitable conclusion, which is that language of thought must be innate. We are

all born with a fully developed language of thought, and it is this that allows us to learn the

natural language of the community that we are born into.

Fodor’s argument leads, therefore, to a form of innatism or nativism about language,

because he thinks that the very possibility of language learning requires an innate language

of thought. There are many other versions of innatism popular among linguists and

cognitive scientists. All are based, in one form or another, on arguments to the effect that

young children are simply not exposed to enough information, or even the right kind of

information, to allow them to learn a language.

These arguments are collectively known as poverty of the stimulus arguments. The most

famous proponent is the linguist Noam Chomsky, who uses them to support his general

theory that all humans share a single language faculty, incorporating specialized language

acquisition tools. Chomsky’s view has gone throughmany iterations, but the basic idea has

remained constant.

Chomsky thinks that all human languages (including sign language) can be understood

in terms of different parameter settings in a universal grammar (the parameters are, as it

were, optional settings, while the grammar provides a fixed structure that holds across all

languages). What we think of as language learning is really parameter setting. The universal

grammar is innate, and so all that a child needs to learn are the specific settings for their

linguistic community. Chomsky views this process of parameter setting as involving

processes of hypothesis formation and testing, rather similar to those proposed by Fodor.

This general picture of how language works is supported both by specific analyses of

different languages and by poverty of the stimulus arguments. The details of Chomsky’s

different models of universal grammar are too complicated to go into here. But we can

summarize the basic elements of his poverty of the stimulus arguments. He and his

followers typically emphasize the following features of the young child’s learning

environment.

■ Children are not positively rewarded for language learning.

■ Children are typically only exposed to positive information (i.e., they are not told what

counts as ungrammatical, but only given examples of grammatical utterances).

■ The date from which each child learns is highly idiosyncratic.

■ Much of the speech that children hear is actually ungrammatical, but not flagged as such.

■ No child encounters more than a tiny fraction of the linguistic information that fixes the

grammatical structure of the language.

It would be hard to dispute any of these claims about the learning environment for young

children. But do they provide support for some version of innatism?

This seems to be an area where the proof of the pudding is in the eating. In other words,

the best way to respond to an impossibility argument is by trying to give examples of

exactly the sort of things that are being claimed to be impossible. In this case, these would

be examples of how significant segments of language can be learned with little or no innate

knowledge. We will be looking at examples in the remainder of this chapter.
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10.3 Language Learning in Neural Networks

As we saw earlier, models of language learning are inextricably linked to models of linguis-

tic understanding. Both Fodor and Chomsky have a very rules-focused way of thinking

about linguistic understanding. This section introduces the very different connectionist

approach to language mastery and language acquisition, which is based on modeling

linguistic abilities in artificial neural networks.

When we first met artificial neural networks in Chapter 5, we discovered some funda-

mental differences between artificial neural networks and the sort of computational

systems to which the physical symbol system hypothesis applies. In particular, we high-

lighted the following three differences.

■ Representation in neural networks is distributed across the units and weights, whereas

representations in physical symbol systems are encoded in discrete symbol structures.

■ There are no clear distinctions in neural networks either between information storage and

information processing or between rules and representations.

■ Neural networks are capable of sophisticated forms of learning. This makes them very

suitable for modeling how cognitive abilities are acquired and how they evolve.

The second feature in particular suggests that neural network models of language are going

to be very different from the rules-based approach just discussed. If neural networks do not

admit a clear distinction between rules and representations, then they cannot incorporate

truth rules (or any other type of rules).

Despite this, neural networks have been strikingly successful at modeling language

mastery, particularly when it comes to modeling how languages are learned (which is

not surprising, of course, since learning is what neural networks are best at). In this section

we will look at some influential and important studies. The networks in these studies show

that there is an alternative to the rule-based conception of language comprehension and

learning discussed in the previous section.

In fact, neural network models are widely held to have shown a system can reveal

complex linguistic skills without having any explicit linguistic rules encoded in it. So, for

example, the simple recurrent networks developed by Jeff Elman have been successfully

trained to predict the next letter in a sequence of letters, or the next word in a sequence of

words. This in itself is very important in thinking about the information processing

involved in language learning. At the very least it casts doubt on claims that we can only

think about language in terms of rule-based processing.

But researchers in this area have also made a second, very important, contribution. This

contribution speaks more directly to issues about the psychological plausibility of neural

network models. Developmental psychologists and psycholinguists have carefully studied

patterns in how children learn languages. They have discovered that, in many aspects of

language acquisition, children display a very typical trajectory. So, for example, children

make very similar types of error at similar stages in learning particular grammatical con-

structions. Neural network researchers have explored the extent to which their models can
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reproduce these characteristic patterns. They have found some striking analogies between

how children learn and how neural networks learn. Let’s look at them.

The Challenge of Tense Learning

One of the most formidable problems confronting children learning a language such as

English is that it has both regular and irregular verbs. Some verbs behave in very predictable

ways. So, for example, their past tenses are formed according to straightforward rules.

Consider the verb “to bat,” for example. This is a regular verb. In the present tense we

have “I bat.” In the past tense this becomes “I batted.” There is a very simple rule here. For

regular verbs we form the past tense by adding the suffix “-ed” to the stem of the verb. The

stem of “to bat” is “batt-.” For regular verbs, then, all that one needs to know in order to be

able to put them in the past tense is their stem.

Contrast regular verbs with irregular verbs. We have “I give” in the present tense. This

becomes “I gave” in the past tense – not “I gived,” as the simple rule might suggest.

Likewise for “I take,” which becomes “I took.” Irregular verbs, by their very nature, are

not easily summarized by simple rules. It is true that there are observable regularities in

how the past tenses of irregular verbs are formed. So, for example, we see that both “I ring”

and “I sing” have similar past tenses (“I rang” and “I sang”). It would be unwise, however,

to take this as a general rule for verbs ending in “-ing.” The past tense of “I bring” is most

certainly not “I brang.” Anyone who has ever learned English as a second language will

know that the corpus of irregular verbs is full of “false friends” such as these.

Yet somehow, more or less all young children in the English-speaking world manage to

find their way through this minefield. How do they do it?

Researchers such as the psychologist Stan Kuczaj have studied the grammaticality

judgments that children made about sentences involving past tense verbs in order to

examine how their understanding of the past tense develops. The test sentences included

both correct past tense forms (such as “brought” and gave”) and incorrect ones (such as

“brang” and “gived”). The incorrect ones were typically constructed either by treating

irregular verbs as if they were regular (as in “gived”), or by exploiting “false friends” (as

in “brang”). Looking at patterns of grammaticality judgments across populations of chil-

dren aged from 3 to 11 has led researchers to hypothesize that children go through three

distinct stages in learning the past tense.

In the first stage, young language learners employ a small number of very common

words in the past tense (such as “got,” “gave,” “went,” “was”). Most of these verbs are

irregular and the standard assumption is that children learn these past tenses by rote.

Children at this stage are not capable of generalizing from the words that they have

learned. As a consequence, they tend not to make too many mistakes. They can’t do much,

but what they do they do well.

In the second stage children use a much greater number of verbs in the past tense, some

of which are irregular but most of which employ the regular past tense ending of “-ed”

added to the root of the verb. During this stage they can generate a past tense for an

invented word (such as “rick”) by adding “-ed” to its root. Surprisingly, children at this
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stage take a step backward. They make mistakes on the past tense of the irregular verbs that

they had previously given correctly (saying, for example, “gived” where they had previ-

ously said “gave”). These errors are known as overregularization errors.

In the third stage, children cease to make these overregularization errors and regain their

earlier performance on the common irregular verbs while at the same time improving their

command of regular verbs. Table 10.1 shows the basic trajectory.

At first sight, this pattern of performance seems to support something like Fodor’s rule-

governed conception of language learning. One might think, for example, that what

happens in the second stage is that children make a general hypothesis to the effect that

all verbs can be put in the past tense by adding the suffix “-ed” to the root. This hypothesis

overrides the irregular past tense forms learned earlier by rote and produces the docu-

mented regularization errors. In the transition to the third stage, the general hypothesis is

refined as children learn that there are verbs to which it does not apply and, correspond-

ingly, begin to learn the specific rules associated with each of these irregular verbs.

The cognitive scientists Steven Pinker and Alan Prince have in fact proposed a model of

understanding of the English past tense that fits very well with this analysis. Their model

has two components and, correspondingly, two information-processing routes. These are

illustrated in Figure 10.1.

One route goes via a symbolic representation of the rule that the past tense is formed by

adding “-ed” to the stemof the verb. The symbolic component isnot sensitive to the particular

phonological form of the verb. It does not recruit information that, for example, the present

tense of the verb ends in “-ing.” It simply applies the rule to whatever input it gets.

The second route, in contrast, goes via an associative memory system that is sensitive to

the phonological form of the verb stem. It is responsible for storing exceptions to the

general rule. It classifies and generalizes these exceptions in terms of their phonological

similarity. One would expect this mechanism to pick up very quickly on the similarity, for

example, between “sing” and “ring.”

The two routes are in competition with each other. The default setting, as it were, is the

symbolic route. That is, the system’s “working hypothesis” is that it is dealing with a verb

where the past tense is formed by adding “-ed” to the stem. But this default setting can be

overridden by a strong enough signal coming from the associative memory system that

keeps track of exceptions. What makes signals from the override system strong is that they

have been suitably reinforced through experience. If I have had plenty of exposure to the

TABLE 10.1 The stages of past tense learning according to verb type

STAGE 1 STAGE 2 STAGE 3

Early verbs Correct Overregularization errors Correct

Regular verbs Correct Correct

Irregular verbs Overregularization errors Improvement with time
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“sing–sang” and “ring–rang” pairs, then this will strengthen the signal for “bring–brang.”

But the more exposure I have to the “bring–brought” pair, the weaker the signal for “bring–

brang.”Gradually, as I become increasingly exposed to different irregular forms, the signals

that are reinforced end up being generally correct.

The model proposed by Pinker and Prince is certainly compatible with the general

trajectory of how children learn the English past tense. It is also supported by the general

considerations we looked at earlier. But should we accept it (or some other rule-based

model like it)?

Exercise 10.2 Explain how this two-component model of past tense understanding is compatible

with the stages identified earlier in young children’s learning of the past tense in English.

This is where artificial neural networks come back into the picture, because researchers

in neural network design have devoted considerable attention to designing networks that

reproduce the characteristic pattern of errors in past tense acquisition without having

programmed into them any explicit rules about how to form the past tense of verbs,

whether regular or irregular.

Connectionist Models of Tense Learning

The pioneering network in this area was designed by David Rumelhart and Jay McClelland

and appeared in their 1986 collection of papers on parallel distributed processing. It was a

relatively simple network, without any hidden units (and hence not requiring a

List of exceptions
(Associative memory)

Regular route
Symbolic representation of rule

Blocking

Output: Past tense form

Input: Verb stem

Figure 10.1 The dual-route model of past tense learning in English proposed by Steven Pinker

and Alan Prince.
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backpropagation learning algorithm), but nonetheless succeeded in reproducing signifi-

cant aspects of the learning profile of young children. The network is illustrated in

Figure 10.2.

There are really three different networks here. The first network takes as input a phono-

logical representation of the root form of a verb. That is, it takes as input a sequence of

phonemes. Phonemes are what linguists take to be the most basic meaningful constituents

of words. An example is the phoneme /n/, which is the final sound in the words “tin” and

“sin.” The first network translates this sequence of phonemes into a representational

format that will allow the network to detect relevant similarities between it and other verb

roots – as well as between the root forms and the correct past tense forms.

This representational format exploits an ingenious device that Rumelhart and McClel-

land call Wickelfeatures (after the cognitive psychologist Wayne Wickelgren, whose ideas

they adapted). The details are very complex, but the basic idea is that a Wickelfeature

representation codes phonetic information about individual phonemes within a word and

their context. The aim is to represent verb stems in a way that can capture similarities in

how they sound (and hence better represent the sort of stimuli to which young children are

exposed).

The first network (the network converting phonological representations into Wickelfea-

ture representations) is fixed. It does not change or learn in any way. The learning proper

takes place in the second network. As the diagram shows, this network has no hidden

units. It is a simple pattern associator mechanism. It associates input patterns with output

patterns. The output patterns are also Wickelfeature representations of words, which are

Pattern associator
Modifiable connections

Decoding/binding
network 

Phonological
representation of

root form

Phonological
representation of

past tense
Wickelfeature

representation of
past tense

Wickelfeature
representation of

root form

Fixed encoding
network

Figure 10.2 Rumelhart and McClelland’s model of past tense acquisition. (Adapted from

Rumelhart, McClelland, and PDP Research Group 1986)

270 Models of Language Learning



then decoded by the third network. This third network essentially reverses the work done

by the first network. It translates the Wickelfeature representations back into sequences of

phonemes.

The network was initially trained on ten high-frequency verbs. The aim here was to

simulate the first stage in past tense acquisition. And then it was trained on a much larger

training set of 410 medium-frequency verbs (of which 80 percent were regular).

The learning algorithm used by the network is the perceptron convergence rule that we

studied back in Section 5.2. At the end of the training the network was almost errorless on

the 420 training verbs and generalized quite successfully to a further set of 86 low-

frequency verbs that it had not previously encountered (although, as one might expect,

the network performed better on novel regular verbs than on novel irregular verbs).

One interesting and important feature of the Rumelhart and McClelland network is that

it reproduced the overregularization phenomenon. This is shown in Figure 10.3, which

maps the network’s relative success on regular and irregular verbs. As the graph shows, the

network starts out rapidly learning both the regular and the irregular past tense forms. And

then there is a sharp fall in performance on irregular verbs after the eleventh training cycle,

while at the same time the degree of success on regular verbs continues to increase.

In other words, while the network’s “understanding” of irregular verbs is “catching up”

with its performance on regular verbs, it is still making characteristic errors. These errors

involve treating irregular verbs as if they were regular. So, the network seems to be doing

0.5
0
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Trials
40

Irregular

80 120 160 200

1.0

0.6
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Figure 10.3 Performance data for Rumelhart and McClelland’s model of past tense learning. The

graph shows the success rates for both regular and irregular verbs. The line for irregular verbs

clearly indicates the overregularization phenomenon. (Adapted from Rumelhart, McClelland, and

PDP Research Group 1986)
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exactly what young children do when they shift from the correct “gave” to the incorrect

“gived” as the past tense of “give.”

Exercise 10.3 Explain in your own words why it is significant that the Rumelhart and McClelland

network produces the overregularization phenomenon.

Although the results produced by the Rumelhart and McClelland network are very

striking, there are some methodological problems with the design of their study. In

particular, as was pointed out in an early critique by Pinker and Prince, the overregulariza-

tion effect seems to be built into the network. This is because the training set is so

dramatically expanded after the tenth cycle. And since the expanded training set is

predominantly made up of regular verbs, it has seemed to many that something like the

overregularization phenomenon is inevitable.

Nonetheless, it is significant that a series of further studies have achieved similar results

to Rumelhart and McClelland with less question-begging assumptions. Kim Plunkett and

Virginia Marchman, for example, have produced a network with one layer of hidden units

that generates a close match with the learning patterns of young children. The network is

illustrated in Figure 10.4.

The Plunkett and Marchman network is in many ways much more typical of the type of

neural network that are generally studied. Whereas the Rumelhart–McClelland network is a

simple pattern associator using the perceptron convergence learning rule, the Plunkett–

Marchman model has hidden units. Their model has twenty input and twenty output

units. Between them is a single hidden unit layer with thirty units. The network uses the

backpropagation learning algorithm. One advantage of this is that it removes the need to

translate the initial phonological representation into Wickelfeatures.

Phonological representation
of past tense (Output) 

Hidden units

Phonological
representation of stem
(Input) 

Figure 10.4 The network developed by Plunkett and Marchman to model children’s learning of

the past tense. The network has a layer of thirty hidden units and is trained using the

backpropagation learning algorithm. (Adapted from Plunkett and Marchman 1993)
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Unlike the McClelland and Rumelhart model, the first stage of the training schedule was

on twenty verbs, half regular and half irregular. After that the vocabulary size was gradually

increased. There was no sudden increase – and hence no “predisposition” toward regular-

ization errors. The percentage of regular verbs in the total vocabulary was 90 percent,

which matches more or less the relative frequency of regular verbs in English. And yet

the network did indeed display the characteristic trajectory, including the regularization

errors characteristic of stage 2 learning in children. Plunkett and Marchman correctly

guessed that the simple presence in the training set of both regular and irregular verbs

would be enough to generate regularization errors during the second stage of training.

It is interesting to compare the learning profile of the Plunkett and Marchman network

with the detailed profile of the learning pattern of a child studied by the psychologist Gary

Marcus. The graph in Figure 10.5 compares the percentage of correctly produced irregular

past tenses in the Plunkett and Marchman simulation and in a child whose past tense

acquisition was studied by Marcus and colleagues. As the graph shows, the percentage of

correctly produced irregular past tenses drops in both the network and the child as the

vocabulary size increases. This seems to correspond to the second of the three stages

identified earlier and to be correlated with the predominance of overregularization errors.

Certainly, there are huge differences between children learning languages and artificial

neural networks learning to correlate verb stems with the correct versions of the past tense.

And even when taken on their own terms, neural network models of language acquisition

are deeply controversial, not least because of concerns about the biological plausibility of

neural networks. But even with these caveats, using artificial neural networks to model
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Figure 10.5 A comparison of the errors made by Adam, a child studied by the psychologist Gary

Marcus, and the Plunkett–Marchman neural network model of tense learning. Unlike the

Rumelhart–McClelland model, this model uses hidden units and learns by backpropagation.

(Adapted from McLeod, Plunkett, and Rolls 1998)
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cognitive tasks offers a way of putting assumptions about how the mind works to the test –

the assumption, for example, that the process of learning a language is a process of forming

and evaluating hypotheses about linguistic rules.

The aim of neural network modeling is not to provide a model that faithfully reflects

every aspect of neural functioning, but rather to explore alternatives to dominant concep-

tions of how the mind works. If, for example, we can devise artificial neural networks that

reproduce certain aspects of the typical trajectory of language learning without having

encoded into them explicit representations of linguistic rules, then that at the very least

suggests that we cannot automatically assume that language learning is a matter of expli-

citly forming and testing hypotheses about linguistic rules. We should look at artificial

neural networks not as attempts faithfully to reproduce the mechanics of cognition, but

rather as tools for opening up new ways of thinking about how information processing

might work.

10.4 Bayesian Language Learning

This final section turns to another alternative to explicit, rule-based models of language

learning. This approach applies the Bayesian framework outlined in Chapter 7. As with the

connectionist approach just considered, Bayesian models of language acquisition set out to

show how the complexities of language can actually be learned without needing to

postulate an innate language of thought or a universal language faculty.

According to Bayesians, language learning takes place through sensitivity to statistical

regularities in heard speech, interpreted in terms of the different elements of Bayes’s Rule –

prior probabilities and likelihoods. The basic idea is that young children learning their first

language (and adults learning a subsequent language) proceed by updating their probabil-

ities according to Bayes’s Rule – or, more accurately, that language learning can be modeled

as a processing of updating probabilities according to Bayes’s Rule.

A quick refresher on Bayes’s Rule. Bayes’s Rule assumes that we have some evidence. In

this case, the evidence is heard speech. It also assumes a hypothesis about how to interpret

the evidence. The end result of applying Bayes’s Rule is to derive what is called a posterior

probability. The posterior probability is the probability of the hypothesis in the light of the

evidence (or, more technically, the probability of the hypothesis conditional upon the

evidence). It is called posterior because it comes after considering the evidence.

To apply Bayes’s Rule, we need to have assigned a probability to the likelihood of the

evidence conditional upon the hypothesis. That is, we need to have a view about how

likely it is that we would see the evidence that we see if the hypothesis were true. We also

need to have assigned a prior probability to the hypothesis. Our prior is the probability that

we assign to the hypothesis before considering the evidence.

With all that in mind, Bayes’s Rule says that the posterior probability of the hypothesis =

Likelihood of the evidence × Prior probability of the hypothesis

Probability of the evidence
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Bayes’s Rule is a straightforward consequence of the definition of conditional

probability.

Exercise 10.4 Go back to Chapter 7 and review the discussion of Bayes’s Rule.

Why might one think that Bayes’s Rule would be a useful tool for thinking about language

learning? A good starting point is studies showing that young children seem to be very

sensitive to statistical regularities in heard speech, and indeed that adults can use statistical

regularities to detect phrase structure.

Probabilities in Word and Phrase Segmentation

One of the most basic challenges in making sense of speech is what is called word segmen-

tation. Speech is a continuous stream of sound. In order to make sense of it, the continuous

stream of sound needs to be segmented into individual words. This is obviously the first

step in understanding language, an essential preliminary to decoding syntactic/grammat-

ical structure and assigning meanings to words and sentences. And in fact, it emerges

relatively early in infant development. Developmental linguists hold that word segmenta-

tion starts to emerge when infants are around 8 months old.

From a phonetic point of view, individual syllables are the natural breaks in the

stream of speech. And they are also the building blocks of words. But how does an

8-month-old infant figure out which combinations of syllables make words, and which

ones do not?

An influential model in developmental linguistics appeals to what are called transitional

probabilities. Let’s take three syllables /mo/, /ma/, and /pa/. The transitional probability

between any two of them is the probability that the second will follow the first. In the

language of probability, it is the probability of the second, conditional upon the first. So,

for example, the transitional probability of /mo/ and /ma/ is the probability that /ma/

follows /mo/, while the transitional probability of /mo/ and /pa/ is the probability that /

pa/ follows /mo/.

The basic idea behind applying transitional probabilities to word segmentation is that

high transitional probabilities will tend to indicate syllables occurring within a word, while

low transitional probabilities will tend to occur across the boundaries of words. This makes

good sense, because there is much greater scope for variation between a syllable at the end

of one word and a syllable at the beginning of the next than there is between two syllables

occurring within a word.

But where do the probabilities come from, you may wonder? The answer is that they

come from frequencies. Young infants have a lot of time to listen to the speech of those

around them, sometimes directed at them but most often not. They also imitate and

reproduce the sounds that they hear when they babble. As shown in the 1990s by Jenny

Saffran, Richard Aslin, and Elissa Newport, infants, like all higher animals, are exquisitely

sensitive to the frequency of correlations, and they can exploit this sensitivity to parse

streams of sound into words.
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In subsequent work, Elissa Newport and Susan Thompson looked at how transitional

probabilities could be a factor in the much more complicated language learning problem

of figuring out how to identify phrases. The basic idea is the same, except that now it is

being applied to whole words, instead of to individual syllables. The transitional probabil-

ities between two words will typically be higher when those words occur inside a phrase,

than when they occur across the boundaries of a phrase. So, for example, take any noun

phrase – “the camera” for example. The probability of the word “camera” coming after the

word “the” will typically be much higher than the transitional probability of “the” coming

after “camera.” This reflects the fact that nouns are typically used with articles (either

definite, such as “the,” or indefinite, such as “a”) within a phrase, whereas the occurrence

of “the” after “camera” would typically signal the start of a new phrase, or even a new

sentence.

This work shows the importance of sensitivity to probability and frequencies in lan-

guage learning. But it is not yet Bayesian reasoning, properly speaking. For that we need to

turn to different examples.

Understanding Pronouns

Linguists have devoted much time and energy to studying pronouns, such as “he,” “she,”

“it,” and “one.” They have been particularly intrigued by the phenomenon typically called

pronominal anaphora (and in fact, this is a case study often used in poverty of the stimulus

arguments). A pronoun is used anaphorically when it picks up on the reference of a term

earlier in the sentence. Here is a simple example (or rather, two examples): “Susan ate an ice

cream and she enjoyed it.” In this sentence, the pronoun “she” refers to Susan and “it”

refers to the ice cream that Susan ate.

It is not difficult to figure out what the two pronouns refer to in “Susan ate an ice cream

and she enjoyed it.” Once you’ve noticed that “she” is a feminine pronoun, everything

falls into place very quickly. But many examples of pronominal anaphora are not so

straightforward. Consider these two, for example.

(1) Tommy beat Mike, and he didn’t like it.

(2) Susan has a black cat, and I want one.

There is no problem interpreting the pronoun “it” in (1). It refers to the fact that Tommy

beat Mike. But the second pronoun “he” can be interpreted in two different ways. It could

refer either to “Tommy”or to “Mike.” So, as written, (1) is ambiguous between two possible

references for “it.”

Sentence (2) is ambiguous in a different way. What is it that I want? I don’t want Susan’s

exact cat. But do I specifically want a black cat, like Susan’s, or am I just generally cat-

deprived, so that any old cat will do? You can think about it like this. (2) is ambiguous

between two possible membership classes for the pronoun “one.” The pronoun “one”

could refer to a member of the class of cats, or to a member of the more specific class of

black cats.
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Typically, though, hearers manage to resolve both ambiguities. How do they do it? This

problem has been tackled from a Bayesian perspective. Here is another sentence with

anaphoric ambiguity.

(3) I’ll play with this red ball and you can play with that one.

The pronoun “one” is ambiguous in (3) in exactly the same way as it was in (2). Are you

being instructed to play with a red ball specifically, or with any old ball, which might or

might not be red? The sentence still seems ambiguous, even if there is only one other ball

in the vicinity, and that ball happens to be red. Even if you start playing with the red ball,

that in itself doesn’t settle whether what I meant was “You can play with that ball” or “You

can play with that red ball.”

It turns out that this exact example was proposed by Jeffrey Lidz and collaborators as

evidence that infants are born with innate knowledge of syntactic structure (in an article

provocatively titled “What children know about syntax but could not have learnt”).

According to Lidz, it is obvious that the second reading is correct (with the relevant

membership class being red balls, rather than balls in general). But, he thinks, no evidence

available to language users could possibly show that to be the intended reference, for

the simple reason that all red balls are balls. This means that the evidence will always

confirm both hypotheses. Yet, young children are able to disambiguate this type of

sentence from a very early age, and so, he concludes, they must have used innate know-

ledge to do so.

Responding to Lidz et al., Terry Regier and Susan Gahl showed how Bayesian reasoning

could solve the problem. They accept the basic argument that there can be no direct

evidence to support the red ball hypothesis, but they think that Bayesian children might

have other, indirect tools at their disposal. In particular, they point out that, from a

Bayesian perspective, we need to look at the likelihoods. In other words, we need to

consider how probable the evidence is, given the hypothesis.

Imagine that you hear someone say to you “I’ll play with this red ball and you can play

with that one.” You’ve heard that same sentence a few times before, and every time there

has been a red ball there for you to play with. The only evidence you have, therefore, is that

the ball you have to play with is red, and as we’ve said, that is perfectly compatible with the

phrase “that one” referring back to the general class of balls, rather than to the specific class

of red balls.

But you need to think about how likely the evidence is, given the hypothesis. In other

words, you need to ask yourself which of these two scenarios is more probable:

(a) The balls in the room are always red (evidence), if what he means is that I should play with

that red ball (hypothesis)?

(b) The balls in the room are always red (evidence), if what he means is that I should play with

any old ball, red or not (hypothesis)?

Regier and Gahl make the plausible claim that, from a Bayesian perspective, (a) is more

probable than (b). This is because it fits the evidence better. If the instruction is to play with
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any old ball, irrespective of color, then you would expect to see some nonred balls in the

room at least some of the time.

Here’s the analogy they give. Suppose you are trying to decide whether all animals bark

(hypothesis 1), or whether only dogs bark (hypothesis 2). Your evidence is that you have

heard lots of dogs barking, but you have never heard anything that is not a dog bark. All

dogs are animals, of course, and so your evidence is consistent with both hypotheses. But

still, you would be wise to opt for hypothesis 2, because if all animals barked then you

would expect to have run into some barking animals that are not dogs.

One of the key claims of Bayesian approaches to language learning, therefore, is that

cognitive scientists have been too quick to make claims about aspects of language being

impossible to learn. Children and adults can learn a lot from thinking about Bayesian

likelihoods, as the example of pronominal anaphora shows.

Learning Linguistic Categories

A related problem much studied by linguists and cognitive scientists is how children come

to learn linguistic categories, and so distinguish between different types of noun. This can

be a particularly challenging problem when the categories have overlapping membership.

To continue with our canine example, all Dalmatians are dogs, and all dogs are animals. So,

we have three linguistic categories:

Dalmation (subordinate category)

Dog (basic category)

Animal (superordinate category)

Imagine a child trying to learn the word “dog.” The family dog happens to be Spotty the

Dalmatian, and she learns to associate the word “dog” with Spotty. Since she knows that

Spotty’s name is “Spotty,” she can quickly figure out that “dog” is not another name for

Spotty. But how does she figure out that “dog” refers to all dogs, not just to Dalmations –

and not to all animals either?

This is another area whether cognitive scientists have appealed to innate knowledge,

suggesting that children are born with a bias in favor of interpreting category words as

basic-level categories, corresponding for example to biological species. As before, this

has been supported by a general argument that children could not possibly learn to

discriminate between subordinate, basic, and superordinate categories simply on the basis

of experience. This argument has been challenged by Fei Xu and Joshua Tenenbaum,

among others.

Xu and Tenenbaum ran a set of experiments on category learning in adults to try

to uncover tools that young children might be using to learn category words. The

experimenters used photographs of objects that fell into subordinate-basic-superordinate
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taxonomies. One of these taxonomies was in fact the Dalmation-dog-animal taxonomy

(although the name of the Dalmatian was not recorded). They were asked to figure out the

meaning of a new, non-English word (e.g., “blick”), based on a small set of labeled samples.

This part of the experiment was intended to map the experience of a typical language-

learning child.

At the same time, in an effort to understand the tools language users might be using, Xu

and Tenenbaum asked their subjects to make pairwise similarity judgments (on a scale of

1 to 9) between the forty-five different objects in the photographs, instructing them to

focus on the aspects of the objects that they had used in interpreting the new words. They

then used these similarity judgments to draw a hierarchical cluster map of perceived

similarities. An example is illustrated in Figure 10.6. Distance in the map corresponds to

perceived similarity. Each node in the tree represents a cluster of stimuli more similar to

each other on average than to objects in the nearest cluster.

Xu and Tenenbaum then developed a Bayesian model, using this cluster analysis as the

hypothesis space. Each similarity cluster corresponded to a single hypothesis about the

possible extension of a word such as “blick,” on the principle that one can’t view objects as

Figure 10.6 A hierarchical cluster of similarity judgments, with nodes corresponding to clusters of

stimuli more similar on average to each other than to objects in the nearest cluster.
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falling under a single category word without seeing them as similar in certain respects. This

means that any set of objects viewed as similar is a candidate for the extension of a

given word.

But how, given a range of hypotheses (corresponding to clusters of objects perceived as

similar), is one going to be decided upon? Xu and Tenenbaum propose a Bayesian decision

process, exploiting the key Bayesian concepts of prior probability and likelihood. They used

the cluster space to derive priors and likelihoods.

The basic idea behind how they derived the priors is that the more distinctive a

similarity cluster is, the more likely it is to have its own name. This makes good sense.

Languages contain names to pick out salient groups of things, after all, and the more

distinctive a similarity cluster is, the more it will stand out (be salient) – and the easier it

will be for language users to pick out members of the group.

The likelihoods for the model were arrived at by applying what they called the size

principle. This is in effect the same principle that we looked at in the context of red balls and

barking dogs. It basically says that you should interpret the hypothesis being confirmed as

narrowly as possible.

So, the hypothesis that “blick” refers to Dalmations is far more likely than the hypoth-

esis that it refers to dogs, if you have heard it applied to three Dalmatians in a row – and

much more likely still than the hypothesis that “blick” refers to animals in general.

Remember that the likelihood measures the probability that a hypothesis is true if the

evidence is relevant. And what the size principle says is that a narrow hypothesis (relative

to the evidence) is more likely to generate that evidence than a broader one.

The key finding from Xu and Tenenbaum’s experiments on adults was that their

category membership judgments were accurately predicted by a Bayesian model using

the priors and likelihoods just described – i.e., with priors fixed by the similarity space

and likelihoods by the size principle. Moreover, when they went on to test 3- to 4-year-old

children on a similar task, they found that the children’s categorization judgments closely

mapped those of the adults, which is certainly consistent with the hypothesis that their

linguistic behavior could be captured by a Bayesian model (assuming that their similarity

judgments mapped those of adults).

The Xu and Tenenbaum experiments provide another illustration of how Bayesian

statistical inference might be deployed by language learners to solve problems that many

cognitive scientists have taken to be unsolvable by any type of learning.

This brings us back to the cluster of issues with which we began. How one thinks about

language learning is very closely tied to how one thinks about linguistic understanding. At

one end of the spectrum, represented by Jerry Fodor and Noam Chomsky, linguistic

understanding is fundamentally a matter of mastering and applying linguistic rules. This

position is often accompanied by poverty of the stimulus arguments to the effect that

substantial parts of language learning must be innate, as young children do not encounter

the sort of evidence that would be required to learn them. At the other end of the spectrum,

the emphasis is less on explicit linguistic rules and more on learning mechanisms, such as

neural networks or Bayesian principles.
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Summary

This chapter has explored different ways of modeling language mastery and language learning. We
started out with a very general argument, due to Jerry Fodor, that language learning must be rule-
based, and saw how that line of thinking led him to a form of innatism about language. Chomsky
reaches a similar view about language learning, from a rather different starting point. We then
turned to two very different approaches. With respect to the very specific problem of how children
learn the past tense of English verbs, we saw how connectionist models of tense learning offer an
alternative to the idea that grammar is learned by internalizing explicitly represented grammatical
rules. The final section looked at Bayesian models of language learning, and showed how a
Bayesian approach can illuminate word segmentation, pronominal anaphora, and learning
hierarchically organized category words.

Checklist

Language and Rules

(1) Language is a paradigmatically rule-governed activity (not just grammatical rules, but also rules

giving the meanings of individual words and governing the deep structure of sentences).

(2) The default hypothesis in thinking about language learning is that it is a matter of learning the

rules that govern the meanings of words and how they combine into meaningful units.

(3) Fodor has built on the default hypothesis to argue that learning a language requires learning truth

rules, which must be stated in the language of thought.

(4) According to Fodor, the language of thought cannot itself be learned, and so must be innate.

(5) Noam Chomsky has reached a similar nativist/innatist conclusion based on poverty of the stimulus

arguments.

(6) One way to challenge such arguments is to construct models that simulate the trajectory of human

language learning without explicitly representing any rules.

Modeling the Acquisition of the English Past Tense

(1) Children learning the English past tense go through three easily identifiable stages:

Stage 1 They employ a small number of verbs with (mainly irregular) past tenses.

Stage 2 They employ many more verbs, tending to construct the past tense through the standard

stem + -ed construction (including verbs they had formerly got right).

Stage 3 They learn more verbs and correct their overregularization errors.

(2) This pattern of past tense acquisition can be accommodated by a symbolic model.

(3) But connectionist models of past tense acquisition have been developed that display a similar

trajectory without having any rules explicitly coded in them.

Bayesian Language Learning

(1) The basic Bayesian idea is that that language learning can be modeled as a processing of updating

probabilities according to Bayes’s Rule.
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(2) The Bayesian approach is supported by studies showing that children and adults are both highly

sensitive to statistical regularities in heard speech.

(3) Studies suggest that infants use transitional probabilities for word segmentation (parsing heard

speech into words), and that transitional probabilities are also used by adults to map the

boundaries of phrases.

(4) Pronominal anaphora (identifying the antecedent of a pronoun) has been proposed as a particular

challenge for noninnatist approaches to language learning, but the problem seems susceptible to a

broadly Bayesian solution.

(5) Another traditional problem for empiricist theories of language learning is how children learn

hierarchical category words that pick out overlapping sets of objects. Xu and Tenenbaum

developed a Bayesian model to solve this problem with appropriate priors and likelihoods,

showing that it captured the linguistic behavior of adults and 3- to 4-year-old children.

Further Reading

Fodor’s discussion of truth rules is in his book The Language of Thought (Fodor 1975). Chomsky

first raised poverty of the stimulus arguments in his influential review of B. F. Skinner’s book

Verbal Behavior in 1959. See also Chomsky 1968, 1980a (summarized with comments and critique

in Chomsky 1980b) and, for more recent discussion, Berwick et al. 2011. For a critical discussion of

these arguments, see Pullum and Scholz 2002, and for a general discussion of arguments for

nativism, see Cowie 1999.

The second volume of Parallel Distributed Processing (McClelland, Rumelhart, and the PDP

Research Group 1986) contains a number of papers applying the theoretical framework of

connectionism to different cognitive abilities. Some of these applications are explored further in

McLeod, Plunkett, and Rolls 1998 and Plunkett and Elman 1997. For more general discussion of

modeling within a connectionist framework, see Dawson 2004. Paul Churchland has been a

tireless proponent of the power of connectionist networks; see, for example, the papers in

Churchland 2007 for a wide range of applications. See also McClelland et al. 2010.

Chapter 18 of the original PDP collection (Rumelhart and McClelland 1986) was the first salvo

in what has become a lengthy debate about how to model past tense learning. Pinker and Prince

1988a made some telling criticisms of Rumelhart and McClelland’s model (Pinker and Prince

1988b, reprinted in Cummins and Cummins 2000, is more condensed). A number of researchers

took up Pinker and Prince’s challenge – see, for example, Plunkett and Marchman 1993. The work

by Marcus described in the text is presented in Marcus et al. 1992. For a more recent exchange,

see Pinker and Ullman 2002 and the reply in McClelland and Patterson 2002. Connectionist models

have been applied to many different aspects of language. Plaut, Banich, and Mack 2003 describes

applications to phonology, morphology, and syntax. Christiansen and Chater 2001 is an

interdisciplinary collection of papers in the emerging field of connectionist psycholinguistics.

Westermann and Ruh 2012 provides a review of different approaches to past tense learning,

including connectionist approaches. Perhaps the most famous formal result in the theory of

language learning is Gold’s theorem, which places constraints upon the class of languages that

can be learned with purely positive feedback. Gold’s theorem is clearly presented in Johnson 2004.
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Doug Rohde and David Plaut have used neural network models to argue that Gold’s theorem

cannot straightforwardly be applied in cognitive science (Rohde and Plaut 1999).

For a helpful and up-to-date overview of Bayesian approaches to language acquisition, see

Pearl and Goldwater 2016. See also Chater and Manning 2006. Saffran, Aslin, and Newport 1996

and Aslin, Saffran, and Newport 1998 were pioneering studies of word segmentation in infancy,

mainly working with artificial languages. Pelucchi, Hay, and Saffran 2009 extended the approach

to more realistic linguistic situations. Thomson and Newport 2007 apply transitional probabilities

to phrase segmentation. The Bayesian analysis of pronominal anaphora described in the text

originates in Regier and Gahl 2004, who were responding to Lidz, Waxman, and Freeman 2003.

The Xu and Tannenbaum experiments on category learning are described in Xu and Tannebaum

2007. For a recent extension of this approach to one-shot category learning, see Lake,

Salakhutdinov, and Tennenbaum 2016.
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Overview

Back in Chapter 5, we saw how information processing works in single-unit networks and then

looked at how the power of neural networks increases when hidden units are added. In Chapter 10

we started exploring how neural networks can model cognition. We looked at neural network

models of past tense learning and saw how their learning trajectory bears striking resemblances to

the learning trajectory of human infants. This chapter turns to another application of neural

networks. We will see how they can be used to model object perception (and, in particular, what

developmental psychologists call object permanence).

Many studies have shown that the perceptual universe of human infants is far more complex

and sophisticated than was traditionally thought. From a very early age human infants seem to be

sensitive to certain basic properties of physical objects. They have definite (and often accurate)

expectations about how objects behave and interact. Some of this research is presented in Section

11.1, where we see how it can very naturally be interpreted in computational terms, as involving

an explicitly represented and quasi-theoretical body of rules and principles (a folk physics).

In Section 11.2, however, we show how some of the very same data can be accommodated

without this type of explicit, symbolic representation. We look at some neural network models that

share some of the basic behaviors of the infants in the experiments without having any rules or
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principles explicitly coded into them. This opens the door to a different way of thinking about

infants’ knowledge of the physical world.

Finally, in Section 11.3 we turn to an issue that has been in the background throughout this

chapter and Chapter 10. How exactly should we think about the relation between symbolic models

(physical symbol systems) and neural network models? Are they in competition with each other. Or

are they giving accounts on different levels? We explore these issues through a famous objection

to neural network modeling due to Jerry Fodor and Zenon Pylyshyn.

11.1 Object Permanence and Physical Reasoning in Infancy

What is it like to be a human infant? Until fairly recently, most developmental psycholo-

gists were convinced that the infant experience of the world is fundamentally different

from our own. The famous psychologist and philosopher William James (brother of the

novelist Henry James) coined the memorable phrase “a blooming, buzzing, confusion” to

describe what it is like to be a newborn infant (a neonate, in the jargon of developmental

psychologists). According to James, neonates inhabit a universe radically unlike our own,

composed solely of sensations, with no sense of differentiation between self and objects or

between self and other, and in which the infant is capable only of reflex actions. It takes a

long time for this primitive form of existence to become the familiar world of people and

objects and for reflexes to be replaced by proper motor behavior.

The most famous theory within the traditional view was developed by the Swiss psych-

ologist Jean Piaget (1896–1980). According to Piaget, infants are born with certain innate,

reflex-like sensorimotor schemas that allow them to perform very basic acts such as sucking

a nipple. Infants gradually bootstrap these basic schemas into more complex behaviors

(what Piaget called circular reactions) and gradually come to learn that they inhabit a world

containing other objects and other individuals. According to Piaget, infants are born

highly egocentric and it is not until the end of what he called the sensorimotor stage (at

around 2 years of age) that they come fully to appreciate the distinctions between self and

other and between the body and other physical objects.

In recent years, however, researchers have developed new techniques for studying the

cognitive abilities of neonates and older infants. These techniques have led to a radical

revision of the traditional view. As a consequence, many developmental psychologists now

think that the world of the human infant is much less of a “blooming, buzzing, confusion”

than James thought. It is now widely held that even very young infants inhabit a highly

structured and orderly perceptual universe. The most famous technique in this area is

called the dishabituation paradigm, which is a technique for exploring the expectations that

infants have about how objects will behave.

Infant Cognition and the Dishabituation Paradigm

The basic idea behind the dishabituation paradigm is that infants look longer at events that

they find surprising. So, by measuring the amount of time that infants look at events of

286 Object Perception and Folk Physics



different types, experimenters can work out which events the infants find surprising and

then use this to work backward to the expectations that the infants had about how those

events were going to turn out.

So, the basic idea is that if infants look longer at something, then that suggests that it did

not turn out the way they expected. This basic idea is applied in practice in a number of

ways. One technique is to habituate infants to a given type of event (i.e., presenting the

infants with examples until they lose interest) and then to present them with events that

differ from the original one in certain specified ways. Looking-time measures can then be

used to identify which of the new events capture the infants’ attention, as measured by the

amount of time the infants spend looking at them. This allows experimenters to detect

which features of the events the infants find surprising – and hence to work out how the

infants expected the events to unfold. This way of identifying “violation of expectations” is

called the dishabituation paradigm.

The developmental psychologist Renée Baillargeon devised a very influential set of

experiments using the dishabituation paradigm. We can use her drawbridge experiments

to illustrate how the paradigm works and what we can learn from it about the perceptual

universe of the human infant. In one set of experiments, Baillargeon habituated her infants

(who were all about 4.5 months old) to a screen (the drawbridge) rotating 180 degrees on a

table. She was interested in how the infants would react when an object was hidden within

the drawbridge’s range of motion, since this would be a way of finding out whether the

infant had any expectations about objects it could not directly perceive.

In order to investigate this, Baillargeon contrived a way of concealing the object so that,

although it could not be seen by the infant, any adult or older child looking at the

apparatus could easily work out that it would obstruct the movement of the screen. She

then presented infants with two different scenarios. In the first scenario the screen rotated

as it had done before until it got to the place where the obstructing box would be – and

then it stopped, exactly as you or I would expect it to. In the second scenario, the screen

kept on rotating for the full 180 degrees and hence apparently passed through the obstruct-

ing box. The experiments are illustrated in Figure 11.1.

Baillargeon found that the infants looked significantly longer in the second scenario.

They were, it seemed, surprised that the screen looked as if it was passing straight through

the obstructing box. So, if we assume that infants look longer when their expectations are

violated, the experiments show that they do not expect the screen to keep on rotating

through the place where the obstructing box would be. Baillargeon concluded that,

although the infants could not see the obstructing box, in some sense they nonetheless

“knew” that the box was there – and that the screen could not pass through it.

This result is very interesting because it has direct implications for a long-running debate

in developmental psychology. Developmental psychologists have long been concerned

with the question: At what stage, in early childhood or infancy, is it appropriate to ascribe a

grasp that objects exist even when not being perceived? (Or, as developmental psycholo-

gists often put it, at what stage in development does object permanence emerge?) On the

traditional view, derived ultimately from Piaget, object permanence does not appear until

relatively late in development, at about 8 or 9 months. What Baillargeon’s drawbridge
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experiments seem to show, however, is that object permanence emerges much earlier than

Piaget (and others) had thought.

But there is more going on here than simply object permanence. After all, it is not just

that the infants are in some sense aware that the obstructing box is there even though they

cannot see it. Their surprise at the second scenario shows that they have expectations

about how objects behave. And, in particular, about how objects should interact. In fact,

Baillargeon’s drawbridge experiments, together with other experiments using the same

paradigm, have been taken to show that even very young infants have the beginnings of

what is sometimes called folk physics (or naïve physics) – that is to say, an understanding of

some of the basic principles governing how physical objects behave and how they interact.

Elizabeth Spelke is another pioneer in using dishabituation experiments to study the

perceptual universe of human infants. She has used a battery of experiments to argue that

from a very young age infants are able to parse the visual array into spatially extended and

bounded individuals. These individuals behave according to certain basic principles of

physical reasoning. She thinks that four of these principles are particularly important for

understanding the infant’s folk physics.

The first principle is the principle of cohesion, according to which surfaces belong to a

single individual if and only if they are in contact. It is evidence for the principle of

Test events

Impossible event

Possible event

180˚ event

112˚ event

Figure 11.1 Schematic representation of the habituation and test conditions in Baillargeon’s

drawbridge experiments. After habituation to a drawbridge moving normally through 180 degrees,

infants were tested both on an impossible event (in which the drawbridge’s movement would

require it to pass through a hidden object) and a normal event (in which the drawbridge halts at

the point where it would make contact with the hidden object). Baillargeon found that 4.5-month-

old infants reliably looked longer in the impossible condition. (Adapted from Baillargeon 1987)
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cohesion, for example, that infants do not appear to perceive the boundary between two

objects that are stationary and adjacent, even when the objects differ in color, shape, and

texture. Figure 11.2 illustrates how sensitivity to the principle of cohesion might be experi-

mentally tested.

Three-month-old infants are habituated to two objects, one more or less naturally

shaped and homogeneously colored, and the other a gerrymandered object that looks

rather like a lampshade. When the experimenter picks up the objects, they either come

apart or rise up cleanly. Infants showmore surprise when the object comes apart, even if (as

in the case of the lampshade) the object does not have the Gestalt properties of homoge-

neous color and figural simplicity. The conclusion drawn by Spelke and other researchers is

that the infants perceive even the gerrymandered object as a single individual because its

surfaces are in contact.

The principle of cohesion suggests that infants will perceive objects with an occluded

center as two distinct individuals, since they cannot see any connection between the two

parts. And this indeed is what they do – at least when dealing with objects that are

stationary. Thus, it seems that infants do not perceive an occluded figure as a single

individual, if the display is static. After habituation to the occluded figure they showed no

preference for either of the test displays.

On the other hand, however, infants do seem to perceive a center-occluded object as a

single individual if the object is in motion (irrespective, by the way, of whether the motion

Habituation

Test

(a) (b)

(a) (b)

Figure 11.2 Schematic representation of an experiment used to test infants’ understanding of

object boundaries and sensitivity to what Spelke calls the principle of cohesion (that surfaces lie on

a single object if they are in contact). (Adapted from Spelke and Van de Walle 1993)
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is lateral, vertical, or in depth). According to Spelke this is because there is another principle

at work, which she terms the principle of contact. According to the principle of contact, only

surfaces that are in contact can move together. When the principle of cohesion and the

principle of contact are taken together they suggest that, since the two parts of the

occluded object move together, they must be in contact and hence in fact be parts of one

individual. This is illustrated in Figure 11.3.

Exercise 11.1 Explain how an infant who understands the principles of cohesion and contact

might respond to the two test situations depicted in Figure 11.3.

Spelke identifies two further constraints governing how infants parse the visual array.

A distinctive and identifying feature of physical objects is that every object moves on a

single trajectory through space and time, and it is impossible for these paths to intersect in

a way that would allow more than one object to be in one place at a time. One might test

whether infants are perceptually sensitive to these features by investigating whether they

are surprised by breaches of what Spelke calls the solidity and continuity constraints. The

drawbridge experiment that we have just discussed is a good example of reasoning

according to the solidity constraint, since it shows that infants are sensitive to the impossi-

bility of there being more than one object in a single place at one time. Figure 11.4 is a

schematic representation of an experiment to test whether infants parse their visual array

in accordance with the continuity and solidity constraints.

These are just some of the experiments that have been taken to show that even very

young infants have a surprisingly sophisticated understanding of the physical world.

Test

Figure 11.3 Schematic representation of an experiment testing infants’ understanding of the

principle of contact (that only surfaces in contact can move together). (Adapted from Spelke and

Van de Walle 1993)

290 Object Perception and Folk Physics



Spelke herself has some very definite views about what this understanding consists in.

According to Spelke, even very young infants have a theoretical understanding of physical

objects and how they behave. Infants are able to represent principles such as those that we

have been discussing – the principles of continuity, solidity, and so on. They can use these

(a) No violation

Time

A

B

A

B

(b) Continuity violation

Time

A

B

?

?

(c) Solidity violation

Time

A

B

?

?

Figure 11.4 Schematic depiction of events that accord with, or violate, the continuity or solidity

constraints. Solid lines indicate each object’s path of motion, expressed as changes in its position

over time. Each object traces (a) exactly one connected path through space and time, (b) no

connected path through space and time, or (c) a path through space and time intersecting another

object’s path. (Adapted from Spelke and Van de Walle 1993)
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principles to make predictions about how objects will behave. They show surprise when

those predictions are not met – and lose interest (as measured by looking times) when they

are met.

How Should the Dishabituation Experiments
Be Interpreted?

What the infants are doing, according to Spelke (and many others), is not fundamentally

different in kind from what scientists do. The infants are making inferences about things

that they cannot see on the basis of effects that they can see – just as scientists make

inferences about, say, subatomic particles on the basis of trails in a cloud chamber. Infants

are little scientists, and the perceptual discriminations that they make reflect their abilities

to make inferences about the likely behavior of physical objects; inferences that in turn are

grounded in a stored and quasi-theoretical body of knowledge about the physical world –

what is sometimes called infant folk physics.

So, what sort of information processing underlies infant folk physics? The physical

symbol system hypothesis gives us a natural way of thinking about how rules might be

explicitly represented and applied. The idea here is that the basic principles of infant folk

physics (such as the principle of continuity) are symbolically represented. These symbolic-

ally represented principles allow the infants to compute the probable behavior and trajec-

tory of the objects in the dishabituation experiments. They show surprise when objects do

not behave according to the results of the computations.

This view is perfectly consistent with the idea that infant folk physics is importantly

different from adult folk physics. Infant folk physics has some puzzling features. Develop-

mental psychologists have found, for example, that infants tend to place more weight on

spatiotemporal continuity than on featural continuity. For infants, movement information

dominates information about features and properties. Their principal criterion for whether

or not an object persists over time is that it should maintain a single trajectory, even if its

perceptible properties completely change.

This is why, for example, infants who otherwise perceive differences between the

color and form of objects still tend not to show surprise when one object disappears

behind a screen and another completely different object emerges at the other side of the

screen. For adults, on the other hand, featural constancy is often more important. This is

elegantly expressed by the developmental psychologists Alison Gopnik and Andrew

Meltzoff:

As adults we individuate and reidentify objects by using both place and trajectory

information and static-property information. We also use property information to

predict and explain appearances and disappearances. If the same large, distinctive white

rabbit appears in the box and later in the hat, I assume it’s the same rabbit, even if I don’t

immediately see a path of movement for it. In fact, I infer an often quite complex

invisible path for the object. If I see the green scarf turn into a bunch of flowers as it

passes through the conjuror’s hand while maintaining its trajectory, I assume it is a
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different object. On the other hand, if an object changes its trajectory, even in a very

complex way, while maintaining its properties, I will assume it is still the same object.

(Gopnik and Meltzoff 1997: 86)

So, there are some important differences between infant folk physics and adult folk

physics. The important point, though, is that for Spelke (and indeed for Gopnik and

Meltzoff ) both should be understood as theories. Here is how Spelke described her findings

in an influential early paper.

I suggest that the infant’s mechanism for apprehending objects is a mechanism of

thought: an initial theory of the physical world whose four principles jointly define an

initial object concept.

(Spelke 1988: 181)

It is no easy matter to say what a theory actually is, but as Spelke states, the simplest way of

thinking about theories is in terms of laws or principles. Laws and principles can be

linguistically expressed. This means that they can easily be represented by physical symbol

structures. In this respect, thinking about naïve physics as a theory is rather like thinking of

grammatical knowledge in terms of rules. In both cases we have cognitive capacities

(knowledge of a theory in the one case, and the ability to apply rules in the other) that

lend themselves to being modeled in computational terms – as suggested by the physical

symbol system hypothesis.

As we saw in the case of grammatical knowledge, however, there are alternatives to this

type of computational approach. We can think about knowledge in nonsymbolic ways,

exploiting neural network models. Some of the possibilities are sketched out in the next

section.

11.2 Neural Network Models of Children’s Physical Reasoning

Connectionist modelers have explored alternatives to the theoretical model of infant

cognitive abilities that we have just looked at. They have tried to show how a neural

network can simulate the behavior of human infants in experiments using the dishabitu-

ation paradigm without any relevant principles or rules being explicitly coded into it.

One prominent researcher in this area is the psychologist Yuko Munakata, working with

a number of collaborators, including the distinguished connectionist modeler Jay McClel-

land (who, together with David Rumelhart, edited the two-volume Parallel Distributed

Processing, which gave such a huge impetus to connectionist approaches to cognitive

science). Here is how Munakata and her co-authors describe the basic idea behind their

approach, and how it differs from the theoretical model:

Because infants seem to behave in accordance with principles at times, there might be

some use to describing their behavior in these terms. The danger, we believe, comes in

the tendency to accept these descriptions of behavior as mental entities that are expli-

citly accessed and used in the production of behavior. That is, one could say that infants’
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behavior in a looking-time task accords with a principle of object permanence, in the

same way one could say that the motions of the planets accord with Kepler’s laws.

However, it is a further – and we argue unfounded – step to then conclude that infants

actually access and reason with an explicit representation of the principle itself.

The connectionist modelers accept that the dishabituation experiments show that human

infants are sensitive to (and react in accordance with) certain basic physical principles

(such as the principles of solidity and continuity). But they reject the way that computa-

tional theorists interpret this basic fact.

The computational approach and the theoretical model of infant cognition both assume

that a cognitive system (whether a human infant, or a computational model) can only act

in accordance with, say, the principle of continuity if that principle is explicitly repre-

sented in it in a symbolic form. But, according to Munakata and her collaborators, this

assumption is wrong – and it can be shown to be wrong by constructing a neural network

model that acts in accordance with the principle of continuity even though it does not

have that principle symbolically encoded in it. They continue:

We present an alternative approach that focuses on the adaptive mechanisms that may

give rise to behavior and on the processes that may underlie change in these mechan-

isms. We show that one might characterize these mechanisms as behaving in accord-

ance with particular principles (under certain conditions); however, such

characterizations would serve more as a shorthand description of the mechanism’s

behavior, not as a claim that the mechanisms explicitly consult and reason with these

principles.

(Munakata et al. 1997: 687)

Their alternative proposal is that infants’ understanding of object permanence is essentially

practical. The fact that infants successfully perform object permanence tasks does indeed

show that they know, for example, that objects continue to exist even when they are not

being directly perceived. But this knowledge is not explicitly stored in the form of theoret-

ical principles. In fact, it is not explicitly stored at all. Rather, it is implicitly stored in graded

patterns of neural connections that evolve as a function of experience.

The basic idea is that infants’ expectations about how objects will behave are driven by

patterns of neural activation. These patterns vary in strength due to

■ the number of neurons firing

■ the strength and number of the connections between them

■ the relations between their individual firing rates

So, the types of perceptual sensitivity that we see in the dishabituation paradigms are

produced by associative mechanisms of pattern recognition. This is exactly what connec-

tionist networks model so well.

Here is how the process works. When infants observe the “reappearance” of occluded

objects, this strengthens the connection between two groups of neurons – between the

group of neurons that fire when the object first appears, on the one hand, and the group
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that fires when it reappears, on the other. As a result, the representations of perceived

objects (i.e., the patterns of neural activation that accompany the visual perception of an

object) persist longer when the object is occluded. So, according to Munakata et al., the

infant’s “knowledge” of object permanence should be understood in terms of the persist-

ence of object representations, rather than in terms of any explicitly coded principles. This

“implicit” understanding of object permanence is the foundation for the theoretical

understanding that emerges at a much later stage in development.

One advantage of their approach is that it explains well-documented behavioral dissoci-

ations in infant development. There is good evidence that infants’ abilities to act on

occluded objects lag a long way behind their perceptual sensitivity to object permanence,

as measured in preferential looking tasks. Although perceptual sensitivity to object per-

manence emerges at around 4 months, infants succeed in searching for hidden objects

only at around 8 months. Munakata et al. argue (and their simulations illustrate) that it is

possible for a visual object representation to be sufficiently strong to generate expectations

about the reappearance of an occluded object, while still being too weak to drive searching

behavior.

Modeling Object Permanence

One of the networks studied by Munakata et al. is designed to simulate a simple object

permanence task involving a barrier moving in front of a ball and occluding the ball for a

number of time steps. Figure 11.5 shows the inputs to the network as the barrier moves in

front of the ball and then back to its original location. The input units are in two rows. The

two rows jointly represent the network’s “field of view.” The bottom layer represents the

network’s view of the barrier, while the top layer represents the network’s view of the ball.

As we see in the figure, when the barrier moves in front of the ball there is no input in the

ball layer. When the barrier moves to one side, revealing the previously occluded ball, the

ball layer is correspondingly activated again. What the network has to do is to learn to

represent the ball even when there is no activation in the input layer corresponding to the

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

Figure 11.5 A series of inputs to the network as a barrier moves in front of a ball and then back

to its original location. The top row shows a schematic drawing of an event in the network’s visual

field; the bottom row indicates the corresponding pattern of activation presented to the network’s

input units, with each square representing one unit. Learning in the network is driven by

discrepancies between the predictions that the network makes at each time step and the input it

receives at the next time step. The correct prediction at one time step corresponds to the input that

arrives at the next time step. (Adapted from Munakata et al. 1997)
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ball – it needs to find a way of representing the ball even when the ball cannot directly

be seen.

In order to design a network that can do thisMunakata andher collaborators used a type of

network that we have not yet looked at, called a recurrent network. These networks are rather

different from the feedforward and competitive networks thatwehave been considering up to

now. Like feedforward and competitive networks, they have hidden units whose weights are

modified by algorithmic learning rules. But what distinguishes them is that they have a

feedback loop that transmits activation from the hidden units back to themselves. This

transmission works before the learning rule is applied. This feedback loop allows the network

to preserve a “memory” of the pattern of activation in the hidden units at the previous stage.

Figure 11.6 is a schematic representation of their recurrent network. The network has two

distinctive features. Thefirst is the set of recurrentweights from the hidden layer back to itself.

These function as just described – to give the network information about what happened at

the previous temporal stage. The second is a set of connections, with corresponding weights,

running from the hidden units to the input units. These weighted connections allow the

network to send a prediction to the input units as to what the next set of inputs will be.

The network’s learning (which works via the standard backpropagation rule) is driven by the

discrepancy between the actual input and the predicted input.

We can think about the network’s “understanding” of object permanence in terms of its

sensitivity to the ball’s reappearance from behind the occluder. This sensitivity can in turn

Internal representation units

Recurrent 

weights

Encoding 

weights

Input units

Prediction 

weights

Figure 11.6 Recurrent network for learning to anticipate the future position of objects. The

pattern of activation on the internal representation units is determined by the current input and by

the previous state of the representation units by means of the encoding weights and the recurrent

weights, respectively. The network sends a prediction back to the input units to predict the next

state of the input. The stimulus input determines the pattern of activation on the input units, but

the difference between the pattern predicted and the stimulus input is the signal that drives

learning. (Adapted from Munakata et al. 1997)
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be measured in terms of the accuracy of the network’s “prediction” when the ball does

eventually reappear. (An accurate prediction is one where the predicted pattern exactly

matches the input pattern.) As training progresses the network becomes increasingly

proficient at predicting the reappearance of occluded objects over longer and longer

periods of occlusion.

What makes this possible is the recurrent connection from the hidden layer back to

itself. The activation associated with the “sight” of the ball at a given temporal stage is

transmitted to the next stage, even when the ball is not in view. So, for example, at

temporal stages 4, 5, and 6 in Figure 11.5, there is no activation in the input units

representing the ball. But, once the network’s training has progressed far enough, the

weights will work in such a way that the memory from the earlier stages is strong enough

that the network will correctly predict the reappearance of the ball at temporal stage 7.

How exactly does this work? The researchers found that improved sensitivity to object

permanence is directly correlated with the hidden units representing the ball showing

similar patterns of activation when the ball is visible and when it is occluded. In effect, they

claim, the network is learning to maintain a representation of an occluded object. The

network’s “understanding” of object permanence is to be analyzed in terms of its ability to

maintain such representations. And this comes in degrees. As further simulations reported

in the same paper show, a network can maintain representations sufficiently strong to

drive perceptual “expectations” but too weak to drive motor behavior. Sensitivity to object

permanence is, they suggest, a graded phenomenon – a function of strengthened connec-

tions allowing maintained activation patterns – rather than a theoretical achievement.

Exercise 11.2 Explain and assess the significance of this network model for thinking about the

information processing underlying object permanence.

Modeling the Balance Beam Problem

Here is a second example of how connectionist models can provide alternatives to theory-

based accounts of infant cognitive development. This is the balance beam problem.

Children are shown a balance beam as in Figure 11.7. The balance beam has a fulcrum and

weights at varying distances from the fulcrum. The children are asked whether the beam is in

balance and, if not, which side will go down. In different trials the weights are varied, but the

children are not given any feedback on whether their answers are correct or not.

Figure 11.7 A balance beam. Weights can be added at different distances from the fulcrum.

Children are asked whether the beam is in balance and, if not, which side will go down.
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Research by the developmental psychologist Bob Siegler has shown that children typic-

ally go through a series of stages in tackling the balance beam problem – rather like young

children learning the past tense of English verbs. And, as in the past tense case, these stages

can be summarized in terms of some relatively simple rules. There are four stages and

corresponding rules. Siegler identifies these as follows:

Stage 1 Children think that the side with the greatest number of weights will go down,

irrespective of how those weights are arranged. If there are equal numbers of weights on

both sides, then the beam is judged to be in balance.

Stage 2 Now they think that when the weights on each side of the fulcrum are equal, the

side on which the weights are furthest away will go down. If this doesn’t hold then

children either use the first rule or guess.

Stage 3 Now children are able to use the correct rule, understanding that downward force is

a function both of weight and of the distance from the fulcrum. But they only manage to

do this when the two sides differ in respect either to weight or to distance, but not both.

Stage 4 It is usually not until adolescence that children acquire a general competence for

balance beam problems – and even then, not all of them do.

The situation here is very similar to the past tense case. And, as in that case, it seems

initially plausible to model the child’s learning process as a matter of learning a series of

rules. But as we’ve already seen, there are other ways to think about this type of develop-

mental progression. Artificial neural networks offer an alternative way of looking at the

phenomenon, illustrating how the appearance of rule-based learning can emerge from a

system that does not exploit any explicit rules.

Jay McClelland and E. Jenkins designed an artificial neural network to model children’s

performance on the balance beam problem. The network is designed to reflect the different

types of potential input in solving balance beam-type tasks. The network is illustrated in

Figure 11.8. It has four different groups of input units, receiving input about weights and

distances for each side of the fulcrum. It is important to realize that the information the

network gets is actually quite impoverished. One group of input units will get information

corresponding to, say, the weights to be found on one side of the beam. Another group of

units will get information corresponding to the distances of those weights from the

fulcrum. But these are separate pieces of information. The network needs to work out

during training that the two groups of units are carrying information about the same side

of the balance beam. The network weights are initially set at random.

As we see in Figure 11.8, the weight units are connected to a pair of hidden units.

Likewise, for the distance units. There are no connections between the two pairs of hidden

units, but each hidden unit projects to both the output units. The network predicts that the

balance beam will come down on the left-hand side when the activation on the left output

unit exceeds the activation on the right output unit.
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The McClelland–Jenkins network learns by backpropagation. The discrepancy between

the correct output and the actual output on given iterations of the task is propagated

backward through the network to adjust the weights of the connections to and from the

hidden units.

As the training went on, the network went through a sequence of stages very similar to

those that Siegler identified in children. The initial training examples showed much more

variation in weight than in distance. This was intended to reflect the fact that children are

more used to using weight than distance in determining quantities like overall heaviness.

As an artifact of the training schedule, therefore, the network’s early discriminations all fell

into Siegler’s stage 1. As training progressed, the network learned to use distance to solve

problems with equal numbers of weights on each side – as per Siegler’s stage 2. The final

stages of the training saw the network move to Siegler’s stage 3, correctly using both weight

and distance provided that the two sides differed only on one dimension, but not on both.

The McClelland–Jenkins network did not arrive at Siegler’s stage 4. But a similar network

designed by Jay McClelland did end up showing all four stages.

The moral to be drawn from this example is rather similar to the moral of the tense

learning networks we looked at in Section 10.2. Like tense learning, progress on the balance

beam problem can be characterized as a step-like progression. Each step seems to involve

exploiting a different rule. The most natural way of modeling this kind of learning pattern

would be via a model that had these rules explicitly wired into it – exactly the sort of model

that would be suggested by the physical symbol system hypothesis. The qualitative pro-

gression between different stages would be explained by the transition from one rule to

another.

Output units

Hidden units

Input units

Weight Distance

RL

L

R

Figure 11.8 The architecture of the McClelland and Jenkins network for the balance beam

problem. (Adapted from Elman et al. 1996)
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Neural network models show us, however, that step-like progressions can emerge without

explicit rules. There are only two rules explicitly programmed into the network – the acti-

vation rule governing the spread of activation forward throughout the network, and the

backpropagation rules governing the spread of error backward through the network. There

is nothing in the network corresponding to the rules in terms of which it might be described.

Nor are there any sharp boundaries between the type of learning at different stages, even

though its actual performance on the task has a clearly identifiable step-like structure.

11.3 Conclusion: The Question of Levels

The models we’ve been looking at have revealed some of the great strengths of artificial

neural networks – particularly when it comes to modeling complicated learning trajector-

ies. We have seen how representations in neural networks are distributed across different

hidden units, and how hard it can be to find any sort of straightforward mapping between

what is going on inside the network and the task that the network is performing. In this

final section we will step back from the details of individual neural network models to look

briefly at a very important concern that some cognitive scientists have raised about the

whole enterprise of neural network modeling.

To set the scene, think back to David Marr’s tri-level hypothesis, which we looked at in

Section 2.3. Marr distinguished three different levels at which cognitive scientists can think

about a given cognitive system. A quick reminder:

■ The computational level provides a general characterization of the information-processing

task that the system is trying to perform.

■ The algorithmic level identifies a particular algorithm or set of algorithms that can carry out

the task identified at the computational level.

■ The implementational level explains how the algorithm is actually realized in the system.

Think about a Turing machine, for example. Analysis at the computational level identifies

the general information-processing task that the machine is performing – e.g., computing

the arithmetical function of addition. An analysis at the algorithmic level will come up

with a specific machine table that will compute this function. And then, when we turn to

the implementational level, what we are interested in is how to build a physical system that

will run that algorithm.

Exercise 11.3 Pick an example of a cognitive phenomenon from anywhere in this book and use

it to illustrate in your own words the difference between Marr’s three levels of analysis.

The difference between the algorithmic and implementational levels is very important. The

implementational level is the level of engineering andmachinery. In contrast, the algorithmic

level is the level of discrete information-processing steps, each governed by specific rules. Our

Turing machine might take the form of a digital computer. In this case the algorithmic-level
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analysis would correspond to the program that the computer is running, while the implemen-

tational analysis would explain how that program is realized in the hardware of the computer.

Physical symbol theorists have tended to be very explicit about the level at which their

accounts are pitched. As one would expect, given the emphasis on algorithms and rules for

manipulating symbol structures, the physical symbol system hypothesis is aimed squarely

as an algorithmic-level account. It is not an engineering-level account of information-

processing machinery. Rather, it needs to be supplemented by such an account.

So, how should we think about artificial neural networks? If we have a connectionist

model of, say, past tense learning, should we think about it as an algorithmic-level

account? Or should we think about it as an account offered at the implementational level?

Do artificial neural networks tell us about the abstract nature of the information-processing

algorithms that can solve particular types of cognitive task? Or do they simply give us

insight into the machinery that might run those information-processing algorithms?

This is important because artificial neural networks will only count as alternatives to

physical symbol systems if they turn out to be algorithmic-level accounts. The whole

contrast that we have been exploring in the last two chapters between neural network

models of information processing and physical symbol system models depends upon

understanding neural networks at the algorithmic level.

A number of physical symbol theorists (most prominently Jerry Fodor and Zenon Pyly-

shyn) have used this point to make a powerful objection to the whole enterprise of artificial

neural network modeling. In effect, their argument is this. We can think about artificial

neural networks either at the implementational or at the algorithmic level. If we think

about them at the implementational level, then they are not really an alternative to the

physical symbol system hypothesis at all. They are simply offering models of how physical

symbol systems can be implemented.

But, Fodor and Pylyshyn argue, artificial neural networks shouldn’t be seen as

algorithmic-level accounts. As language of thought theorists (as described in Chapter 4),

they think that cognition can only be understood in terms of the rule-governed transform-

ation of abstract symbol structures – a manipulation that is sensitive only to the formal,

syntactic features of those symbol structures. And this only works when we have symbol

structures composed of separable and recombinable components.

But artificial neural networks simply do not have separable and recombinable compon-

ents. They have a very different kind of structure. The state of a network at any given

moment is fixed by the state of all the units it contains. And since each distinct unit has a

range of possible activation levels, there are as many different possible dimensions of

variation for the network as a whole as there are units. So, if there are n such units, then

we can think of the state of the network at any given moment as a point in an n-

dimensional space – standardly called the activation space of the system.

Computation in an artificial neural network is really a movement from one point in the

network’s activation space to another. But when you think about it like that, it is hard to

see how the notion of structure can apply at all. A point on a line does not have any
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structure. It does not have separable and recombinable components. Nor does a point on

the plane (i.e., in two-dimensional space) – or a point in any n-dimensional space.

This allows us to see the force of Fodor and Pylyshyn’s argument. We can put it in the

form of a dilemma. Either neural networks contain representations with separable and

recombinable components, or they do not. If they do contain such representations, then

they are not really alternatives to the physical symbol system hypothesis. In fact, they will

just turn out to be ingenious ways of implementing physical symbol systems. But if, on the

other hand, they do not contain such representations, then (according to Fodor and

Pylyshyn) they have absolutely no plausibility as algorithmic-level models of information

processing. Here is the argument, represented schematically:

1 Either artificial neural networks contain representations with separable and

recombinable components, or they do not.

2 If they do contain such representations, then they are simply implementations of

physical symbol systems.

3 If they do not contain such representations, then they cannot plausibly be described as

algorithmic information processors.

4 Either way, therefore, artificial neural networks are not serious competitors to the

physical symbol system hypothesis.

This argument is certainly elegant. You may well feel, though, that it is begging the

question. After all, the whole point of the neural network models we have been

looking at in this chapter (and Chapter 10) has been to try to show that there can be

information processing that does not require the type of rule-governed symbol manipula-

tion at the heart of the physical symbol system hypothesis. In a sense, the models

themselves are the best advertisement for artificial neural networks as genuine alternative

models of information processing – rather than simply implementations of physical

symbol systems.

Exercise 11.4 Assess in your own words step 3 in Fodor and Pylyshyn’s argument.

In any case, there is no law that says that there is only one type of information

processing. Perhaps the physical symbol system approach and the neural networks

approach can co-exist. It may turn out that they are each suitable for different

information-processing tasks. When we explored the language of thought hypothesis, for

example, we placed considerable emphasis on the role of propositional attitudes such as

belief and desire in causing behavior. The interplay of syntax and semantics in the

language of thought was intended to capture the idea that beliefs and desires could bring

about behavior in virtue of how they represent the world. But the types of task we

have been looking at in these last two chapters seem very different – closer to perception

and pattern recognition than to abstract symbol manipulation. It may turn out that

different types of cognitive task require fundamentally different types of information

processing.
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Summary

This chapter first reviewed experiments indicating infants’ expectations of physical objects and

their behavior, resulting in a theory-like folk physics being attributed to infants. We then looked at

a neural network model of infant understanding of object permanence. What we see is that,

without really having any rules encoded in it, the network can accurately model infant

expectations about when occluded objects are going to reappear from behind a barrier. It learns to

do this because of feedback connections from the hidden units to themselves, which function as a

type of memory within the network. The chapter ended by considering a famous dilemma that

Fodor and Pylyshyn have posed for neural network models.

Checklist

Object Permanence in Infancy

(1) According to the traditional view, the perceptual universe of the infant is a “blooming, buzzing,

confusion” with infants only coming to understand object permanence (i.e., that objects continue

to exist when they are not directly perceived) at the age of 8 months or so.

(2) Recent studies using the dishabituation paradigm have led many developmental psychologists to

revise this view and to claim that even very young infants inhabit a highly structured and orderly

perceptual universe.

(3) Researchers such as Elizabeth Spelke have argued that young infants are able to parse the visual

array into objects that behave according to certain basic physical principles. This is often called

object permanence.

Neural Network Models of Object Permanence

(1) Many cognitive scientists think that object permanence depends upon computations that exploit

explicitly represented physical principles (a primitive folk physics)

(2) Munakata’s neural network model suggests that object permanence might be a matter of having

representations of objects that persist when the object is occluded, rather than explicitly

representing physical principles.

(3) This network is a recurrent network, where a feedback loop from the hidden units back to

themselves functions as a type of memory.

Modeling the Balance Beam Problem

(1) Studies have explored how young children reason about what will happen to objects of different

weights placed on opposite sides of a balance beam at different distances from the fulcrum.

(2) Children typically go through a fairly standard learning trajectory, where weight and distance are

differently weighted at different stages, before they understand that downward force is a function

of both weight and distance

(3) This trajectory can be modeled by a neural network whose hidden units develop associative

connections between inputs corresponding to the weights and distances.
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(4) This suggests that we can think about children’s developing physical understanding without

assuming that they are developing an increasingly sophisticated theoretical understanding of

physical principles connecting force, weight, and distance.

The Fodor–Pylyshyn Objection to Neural Network Modeling

(1) Fodor and Pylyshyn start with a dilemma: Either artificial neural networks contain representations

with separable and recombinable components, or they do not.

(2) If neural networks do contain such representations, then (they argue) the networks are simply

implementations of physical symbol systems.

(3) But if they do not contain such representations, then (according to Fodor and Pylyshyn) they

cannot plausibly be described as algorithmic information processors.

(4) Either way, Fodor and Pylyshyn argue, artificial neural networks are not serious competitors to the

physical symbol system hypothesis.

(5) But – this seems to be begging the question, since the central claim of the neural networks is that

information processing need not require the type of rule-governed symbol manipulation at the

heart of the physical symbol system hypothesis.

Further Reading

The drawbridge experiments described in Section 9.3 were first present in Baillargeon 1986 and

1987. They have been extensively discussed and developed since then. For a more recent model,

see Wang and Baillargeon 2008. Spelke’s experiments using the dishabituation paradigm are

reviewed in many places (e.g., Spelke et al. 1995). A general discussion of habituation

methodology can be found in Oakes 2010. Spelke and Kinzler 2007 reviews evidence for infant

“core knowledge” in understanding objects, actions, number, and space. Susan Carey and Renée

Baillargeon have extended Spelke’s “core knowledge” in a number of ways. Summaries can be

found in Carey and Spelke 1996, Carey 2009, Baillargeon et al. 2010, and Baillargeon and Carey

2012. Woodward and Needham 2009 is a collection of review articles on infant cognition. Hespos

and van Marle 2012 provide a summary pertaining specifically to infants’ knowledge of objects.

Cacchione 2013 continues experimental work on infant perception of cohesion. The “child as little

scientist” theory is engagingly presented in Gopnik and Meltzoff 1997.

One of the first papers exploring connectionist approaches to object permanence was Mareschal,

Plunkett, and Harris 1995. See further Mareschal and Johnson 2002. The papers discussed in the text

are Munakata et al. 1997, Munakata 2001, and Munakata and McClelland 2003. For a book-length

treatment of the power of connectionist approaches in thinking about cognitive development, see

Elman et al. 1996 – which also contains a detailed account of the balance beam network discussed in

Section 9.4 (originally presented in McClelland and Jenkins 1991). Plunkett and Elman 1997 is an

accompanying workbook with software. Marcus 2003 attempts to integrate connectionist and

symbolic approaches. Elman 2005 is another good review. A critical view can be found in Quinlan

et al. 2007.
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The Fodor and Pylyshyn argument discussed in Section 9.5 can be found in Fodor and Pylyshyn

1988. It has been widely discussed. A number of important papers are collected in Macdonald and

Macdonald 1995. See chapter 9 of Bermúdez 2005 for a general discussion and further references

and Calvo and Symons 2014 for a book-length overview. Jansen and Watter 2012 proposes a

network that the authors claim displays strong systematicity.
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Overview

This chapter is dedicated to machine learning, one of the hottest topics in contemporary AI and

the key to the success of multi-billion-dollar corporations such as Google, Facebook, and Amazon.

We begin in Section 12.1 by introducing the idea of expert systems, computer programs that are

designed to replicate (and improve on) the performance of human experts in specialized domains,

such as identifying diseases in humans and plants, or processing credit card applications. These

programs can often be represented as decision trees. There are different ways of constructing

expert systems, however. One way is to start with human experts and write a program that

codifies their collective knowledge. Alternatively, machine learning algorithms can be used to

construct a decision tree by analyzing large databases of examples and deriving rules that can then

be used to classify new examples. We illustrate this through ID3, which is an example of a

traditional machine learning algorithm.

Traditional algorithms such as ID3 are still highly dependent upon how their databases are

labeled and constructed. They typically require lengthy and complex processes of feature
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engineering to structure the databases. In the subfield of machine learning known as

representation learning computer scientists write programs that will do their own feature

engineering. And within representation learning as a whole, the greatest advances have come

from what is called deep learning.

We explore deep learning in Sections 12.2, 12.3, and 12.4. In Section 12.2 we see how deep

learning programs typically involve multiple layers of artificial neural networks. These networks are

hierarchically organized to extract increasingly complex information from the raw data. The

mammalian visual system is an explicit inspiration for this type of construction. Section 12.3

introduces two representative types of neural networks used for deep learning – autoencoders and

convolutional neural networks. Finally, in Section 12.4 we look at the reinforcement learning

methods behind two of the most spectacular examples of deep learning – the AlphaGo and

AlphaGo Zero programs created by Google’s Deep Mind research team.

12.1 Expert Systems and Machine Learning

In the field of AI known as expert systems research, researchers write computer programs to

reproduce (and ideally improve on) the performance of human beings who are expert in a

particular domain.

Expert systems programs are typically applied in narrowly defined domains to solve very

determinate problems, such as diagnosing specific medical disorders. A well-known expert

systems program called MYCIN was developed at Stanford University in the early 1970s.

MYCIN was designed to simulate a human expert in diagnosing infectious diseases. It took

in information from doctors on a particular patient’s symptoms, medical history, and

blood tests, asking for any required information that it did not already have. It then

analyzed this information using a knowledge base of about 600 heuristic rules about

infectious diseases derived from clinical experts and textbooks.

MYCIN produced a number of different diagnoses and recommendations for antibiotic

treatments. It was able to calculate its degree of confidence in each diagnosis and so present

itsfindings as a prioritized list. AlthoughMYCIN was never actually used as the sole tool for

diagnosing patients, a widely reported study at Stanford University’s medical school found

that it produced an acceptable diagnosis in 69 percent of cases. You may think that

69 percent is not very high, but it turns out to be significantly higher than infectious

disease experts who were using the same rules and information.

Expert Systems and Decision Trees

Expert systems have become very deeply entrenched in the financial services industry,

particularly for mortgage loan applications and tax advice. Most banks these days have

online “wizards” that will take mortgage applicants through a series of simple questions

designed to lead to a decision on the applicant’s “mortgage-worthiness.”Mortgage wizards

can be represented through decision trees. In the simplest form of decision tree each node

308 Machine Learning: From Expert Systems to Deep Learning



corresponds to a question. Each node has several branches leading from it, corresponding

to different answers to the question.

Figure 12.1 illustrates a very simple schematic expert system for a loan decision tree. Two

features of this decision tree are worth highlighting. First, it offers a fixed decision proced-

ure. Whatever answers the loan applicant gives to the fixed questions, the decision tree will

eventually come up with a recommendation. Second, the presentation in tree form is

completely inessential. We can easily convey what is going on in terms of explicit rules,

such as the following:

IF income less than $40K THEN no loan

What is the
applicant’s
income?

More than
$75K

Criminal
record?

Less than
$40K

How long has
the applicant

been working?

$40K - $75K

No loan

Less than
1 year

More than
5 years

yesno

Good
credit?

No loan

1-5 years

Loan No loan

noyes

Loan No loan

Loan

Figure 12.1 A decision tree illustrating a mortgage expert system. (From Friedenberg and

Silverman 2006)
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IF income greater than $75K AND no criminal record THEN loan

IF income between $40K and $75K AND applicant working for 1–5 years AND credit not

good THEN no loan

(I have used uppercase letters to bring out the logical structure of the rules.) When the

decision tree is written as a computer program it may well be written using explicit rules such

as these.

The decision tree works because of the questions that are asked at each node. When

taken together the questions exhaust the space of possibilities. Each question partitions the

possibility space in such a way that each branch of the tree leads to a unique outcome

(what computer scientists call a terminal leaf or node). But how are we supposed to get to

these questions? How does the decision tree get designed, as it were?

One possibility would be to ask a team of mortgage loan officers to sit down and work out

a decision tree that captures the practices at their bank. This could then be used as the basis

for writing a program in a suitable programming language. This would be fine, and it is no

doubt how many expert systems programs are actually written (particularly in the mortgage

area). But from the perspective of AI this would not be very interesting. It would be an expert

system only in a very derivative sense. The real expert system would be the team of mortgage

loan professionals. Much more interesting would be a program that was capable of produ-

cing its own decision tree – a program capable of imposing its own structure upon the

problem and working out what would count as a solution. How would this work?

Suppose that we have a huge database of all the loan decisions that the bank has taken

over a long period of time, together with all the relevant information about the applicants –

their income, work history, credit rating, and so on. If we can find a way of representing the

bank’s past decisions in the form of a decision tree, so that each branch of the tree ends

either in the loan being given or the loan being declined, then we can use that decision tree

to “process” new applications.

This is a classic example of the type of problem tackled in the branch of AI known as

machine learning (a subfield in expert systems research). The challenge is to produce an

algorithm that will organize a complex database in terms of some attribute we are particu-

larly interested in (such as an applicant’s loan-worthiness, in the example we are consider-

ing). The organization takes the form of a decision tree, which will determine whether or

not the attribute holds in a given case (i.e., whether or not the applicant is loan-worthy).

ID3: An Algorithm for Machine Learning

This section explores an influential machine learning algorithm developed by the computer

scientist Ross Quinlan. Quinlan developed the ID3 learning algorithm while working at the

University of Sydney in Australia. He now runs a company called RuleQuest Research which

is commercially marketing updated and more efficient versions of the ID3 algorithm.

A machine learning algorithm works on a vast database of information. It looks for

regularities in the database that will allow it to construct a decision tree. Machine learning

algorithms such as ID3 only work on databases that take a very specific form.
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The basic objects in the database are standardly called examples. In the loan application

decision tree that we looked at earlier, the examples are loan applicants. These loan

applicants can be classified in terms of a certain number of attributes. Each example has a

value for each attribute. So, for example, if the attribute is Credit History?, then the possible

values are Good or Bad and each mortgage applicant is assigned exactly one of these values.

The attribute we are interested in is the target attribute. In our example the target attribute is

Loan and the two possible values are Yes and No. Again, every applicant is either offered a

loan or is turned down.

The attributes work to divide the examples into two or more classes. So, for example, the

attribute at the top of the decision tree is Income?. This attribute divides the loan applicants into

three groups. As we move down each branch of the tree each node is an attribute that divides

the branch into two or more further branches. Each branch ends when it arrives at a value for

the target attribute (i.e., when the decision is made on whether to give the loan or not).

The ID3 algorithm exploits the basic fact that each attribute divides the set of examples into

two or more classes. It assigns attributes to nodes, identifying, for each node in the decision

tree, which attributewould be most informative at that point. That is, it identifies at eachnode

which attribute would divide the remaining examples up in the most informative way.

The ID3 algorithmuses a statisticalmeasure of informativeness, standardly called information

gain. Information gain measures how well a particular attribute classifies a set of examples. At

each node the algorithm chooses the remaining attribute with the highest information gain.

The concept of information gain is itself defined in terms of a more fundamental measure

called entropy. (Warning: You may have come across the concept of entropy in physics, where

it features for example in the second law of thermodynamics. Entropy is defined somewhat

differently in information theory than in physics and it is the information-theoretic use that

we are interested in here.) We can think of entropy as a measure of uncertainty.

Once we have a formula for calculating entropy we can calculate information gain

relative to a particular attribute, and then we can use that to construct the decision tree.

Basically, for each attribute, the algorithm works out how well the attribute organizes the

remaining examples. It does this by calculating how much the entropy would be reduced if

the set were classified according to that attribute. This gives a measure of the information

gain for each attribute. Then the algorithm assigns the attribute with the highest infor-

mation gain to the first node on the tree. And the process is continued until each branch of

the tree ends in a value for the target attribute.

To see how ID3 works, consider this relatively simple problem – deciding whether or not

the weather is suitable for playing tennis. Imagine that, as keen tennis players who seriously

consider playing tennis every day, we collect information for 2 weeks. For each day we log the

principal meteorological data and note whether or not we decide to play tennis on that day.

We want to use this information to construct a decision tree that we can use in the future.

So, the target attribute is Play Tennis? Here are the other attributes with the values they

can take.

Outlook? {sunny, overcast, rain}

Temperature? {hot, mild, cool}
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Humidity? {high, low, normal}

Wind? {weak, strong}

And here is our database.

Even this relatively small database is completely overwhelming. It is very hard to find

any correlations between the target attribute and the other attributes. Fortunately, though,

this is exactly the sort of problem that ID3 can solve.

The first step is to find the attribute with the highest information gain. When ID3

calculates the information gain for all four attributes the results come out as follows:

Gain (S, Outlook?) = 0.246

Gain (S, Temperature?) = 0.029

Gain (S, Humidity?) = 0.151

Gain (S, Wind?) = 0.048

DAY OUTLOOK? TEMPERATURE? HUMIDITY? WIND? PLAY

TENNIS?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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So, it is clear what ID3 will do. The information gain is highest for Outlook? and so that is

the attribute it assigns to the first node in the decision tree. The decision tree looks like the

one in Figure 12.2.

Each of the three branches coming down from the first node corresponds to one of the

three possible values for Outlook?. Two of the branches (Sunny and Rain) lead to further

nodes, while the middle branch immediately ends.

It turns out that assigning attributes to these two nodes is all that is required for a

comprehensive decision tree – i.e., for a decision tree that will tell us whether or not to play

tennis in any combination of meteorological conditions. The final decision tree is illus-

trated in Figure 12.3.

Outlook?

RainSunny

Overcast

Yes

Humidity? Wind?

YesNo YesNo

High Normal Strong Weak

Figure 12.3 The complete decision tree generated by the ID3 algorithm.

Outlook?

RainSunny

Yes

?? ??

Overcast

Figure 12.2 The first node on the decision tree for the tennis problem. Outlook is the first node

on the decision tree because it has the highest information gain.
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Exercise 12.1 Check that this decision tree works for two of the lines in the original database.

This is a “toy” example. But there are plenty of “real-life” examples of how successful

ID3 can be. Here is one.

In the late 1970s Ryszard Michalski and Richard Chilausky, two computer scientists at

the University of Illinois (deep in the agricultural heartland of America’s Midwest), used

ID3 to devise an expert system for diagnosing diseases in soybeans, one of Illinois’s most

important crops. This is a rather more difficult problem, since there are nineteen common

diseases threatening soybean crops. Each disease is standardly diagnosed in terms of

clusters of thirty-five different symptoms. In this case, therefore, the target attribute has

nineteen different possible values and there are thirty-five different attributes. Many of

these attributes also have multiple possible values.

In order to appreciate how complicated this problem is, look at Figure 12.4. This is part

of a questionnaire sent to soybean farmers with diseased crops. It asks for details on a wide

range of attributes. Completed questionnaires such as this one were one of the inputs to

the initial database. They were supplemented by textbook analyses and lengthy

ENVIRONMENTAL DESCRIPTORS
TIME OF OCCURRENCE = ?
PLANT STAND = ?
PRECIPITATION = ?
TEMPERATURE = ?
OCCURRENCE OF HAIL = ?

PLANT GLOBAL DESCRIPTORS
SEVERITY = ?
SEED TREATMENT = ?
PLANT HEIGHT = ?

PLANT LOCAL DESCRIPTORS
CONDITION OF LEAVES = ?
LEAFSPOTS-HALOS = ?
LEAFSPOTS-MARGINS = ?
LEAFSPOT SIZE

LEAF SHREDDING = ?
LEAF MALFORMATION = ?
LEAF MILDEW GROWTH

Figure 12.4 A sample completed questionnaire used as input to an ID3-based expert system for

diagnosing diseases in soybean crops. (Adapted from Michalski and Chilausky 1980)
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consultations with a local plant pathologist. The total database on which ID3 was trained

comprised 307 different examples.

Michalski and Chilausky were interested not just in whether ID3 could use the training

examples to construct a decision tree. They wanted to compare the resulting decision tree

to the performance of a human expert. After all, what better gauge could there be of

whether they really had succeeded in constructing an expert system? And so, they tested

the program on 376 new cases and compared its diagnoses to those made by various

experts on plant disease (including the author of the textbook that they had originally

used to compile the database). As it turned out, the expert system did much better than the

human expert on the same 376 cases. In fact, it made only two mistakes, giving it a 99.5

percent success rate, compared to the 87 percent success rate of the human experts.

12.2 Representation Learning and Deep Learning

A machine learning algorithm organizes a complex database in terms of one or more target

attributes. The objects in the database (the examples) are labeled in terms of a much larger

number of attributes. And then, as we just saw with the weather example, the learning

algorithm works how to classify the examples progressively in terms of the nontarget

attributes until an answer is reached on the target attributes. We can represent this process

as a decision tree.

This is very different from a decision tree that is reached by pooling and organizing the

insights of a team of experts. Imagine the work that it would take, for example, to get a

team of tennis coaches to organize the little database from the last section into a simple set

of rules that could tell you whether or not to play tennis in different weather conditions.

And, as we saw from the soybean disease example, expert systems trained with machine

learning algorithms can outperform human experts.

But still, think about all the work that has to be done before the machine learning

algorithm can do its job. When Michalski and Chilausky used ID3 to train an expert system

to diagnose diseases in soybean crops, they started with a database that was already highly

organized. As shown in Figure 12.4, the examples in the database were classified in terms of

highly complex attributes, including different types of information about the plant’s

leaves, fruit pods, and seeds, as well as general facts about the weather.

In a sense, therefore, much of the work had already been done before the machine

learning algorithm had even got going. And so, you might think, all of this preliminary

work really reduces the extent to which the algorithm can properly be described as

learning. Applying a machine learning algorithm such as ID3 to a database depends

crucially upon how the examples in the database are labeled and categorized. And that is

an activity that is typically performed by human experts.

There are many people who think that the whole idea of artificial intelligence is confused.

So, it is often said, for example, that computers can only follow rules blindly. They are

not intelligent themselves. They merely borrow the intelligence of their programmers.

John Searle’s Russian room argument (see Section 4.3) is a classic expression of this
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point of view. And you can see how people unsympathetic to AI for these reasons

would think about machine learning algorithms such as ID3. ID3 is impressive in a

very limited sense, they might say, but the real intelligence comes from the human experts

who designed the questionnaires and wrote the textbooks on which the questionnaires

are based.

The general thought here is that computers cannot work with raw data such as photo-

graphs of diseased soybean plants, for example. They can only work with data that has

already been interpreted. Something like this is in fact the guiding idea behind a very

familiar experience from browsing the internet. You have probably had plenty of experi-

ence with Google’s CAPTCHA tool for detecting bots on the internet. The name,

CAPTCHA, is an acronym for Completely Automated Public Turing Test to Keep Com-

puters and Humans Apart. A typical image-based CAPTCHA might present you with a

photograph divided into 9 subimages and ask you to click on all the subimages that, say,

contain part of a car. This is a task than humans can perform with ease, but computers have

long had trouble with.

Imagine trying to write a program that will pick out cars in photographs. You know that

cars typically have four wheels, but it would be a very unusual photograph that revealed all

four of them. And a car propped up on bricks without wheels is still a car. Nor is it easy to

define a wheel. We know that wheels are round, but that doesn’t help when you can only

see part of it. Nor when you can only see it from an angle. The more one thinks about it, the

harder it seems to program a computer than can solve CAPTCHA-type tasks – which is why

the CAPCHA widgets are so good at their job.

So, you can think of machine learning algorithms such as ID3 as operating on

data that has already been put through a CAPTCHA-like process by human interpreters.

The data is labeled with the features that the algorithm will work on. In machine

learning this is called feature engineering. It is not a trivial task, because data sets can

typically be labeled in many different ways and some ways are much easier to work with

than others.

For a simple example, consider elementary arithmetic. You probably learned some

simple algorithms for multiplying numbers at a very early age. These algorithms are so

familiar that it is easy to forget how dependent they are on representing numbers in base

10. You should have no difficulty multiplying 43 by 17. But now try doing the same thing

in Roman notation (where you now have to multiply XXXXIII by XVII). Or in binary

notation (where the task is now to multiply 101011 by 10001). Computers typically work

in binary, but you will probably struggle with binary multiplication.

For a more complicated example, look at the two diagrams in Figure 12.5. Imagine that

you have a database of examples that you are trying to divide into two categories. One way

to do that is to use the information in the database to plot all of the examples on a

scatterplot graph and then see if you can write down the equation of a line that separates

the two groups. But you have a choice of coordinate systems. In the left-hand diagram, the

examples are all plotted using Cartesian coordinates (i.e., in terms of their position on an

ordinary x-axis and y-axis). As you can see, the examples do clearly fall into two groups, but

since the groups are concentric bands you will need to write the equation for a circle.
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Exactly the same data is presented in the right-hand diagram, but here they are plotted

using polar coordinates (e.g., in terms of their distance from a reference point in the middle

of the two concentric circles and their angle from the reference direction of straight

upward). Now the two categories of examples are separated by a straight line and the

equation is much easier to write.

Exercise 12.2 Can you think of another example where the difficulty of solving a problem varies

according to how the problem is formulated?

These two illustrations are both examples of feature engineering – coding the examples

in the database in terms of features that will make it easier to solve the relevant problem.

For the multiplication example, the key feature of the numbers being multiplied are how

they can be represented in our ordinary base 10 notation (what we more often call decimal

notation), as opposed to how they can be represented in base 2 notation (binary) or the

Roman version of base 10 notation. And for the scatterplot example, the key features are

how the examples can be represented in terms of their distance and angle from a reference

point and reference direction.

Standard machine learning algorithms such as ID3 can only get to work once the feature

engineering has been carried out, typically by programmers and other human experts. And

this feature engineering is often the most complicated and time-consuming part of the

process. It is not hard to see the advantages of designing programs and algorithms that

would be able to do this feature engineering for us. The technical name for this is repre-

sentation learning or feature learning.

This brings us to deep learning, which will occupy us for the rest of this chapter. Deep

learning is one of the hottest topics in contemporary AI and computer science, pioneered

by university researchers and by teams at major tech companies (such as the Deep Mind

Figure 12.5 Different ways of distinguishing two groups in a database of examples. The left-

hand representation uses Cartesian coordinates, while the right-hand representation uses polar

coordinates. The right-hand representation makes it much easier, for example, to write the

equation for a line separating the two groups.
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team associated with Google). Deep learning algorithms have been responsible for import-

ant theoretical advances in areas of AI that had traditionally been viewed as most challen-

ging and intractable. These include computer vision and natural language processing, areas

where computer scientists have long struggled to make anything but the most basic

advances.

Deep learning has also had practical applications across a wide range of areas. These

include software for reading handwriting (not just in languages with alphabets, such as

English, but in Chinese) and hence for processing handwritten documents, such as

checks, for example. Deep learning has been extensively applied to speech recognition.

As a result, voice-based AI, such as Amazon’s Alexa, is typically powered by deep learning

algorithms. Deep learning is also a key component in the technology behind self-

driving cars.

As you might expect, there are many different understandings of deep learning. But here

is a very useful characterization from a review article in the journalNature by three pioneers

of deep learning – Yann LeCun, Yoshua Bengio, and Geoffrey Hinton:

Representation learning is a set of methods that allows a machine to be fed with raw data

and to automatically discover the representations needed for detection or classification.

Deep-learning methods are representation-learning methods with multiple levels of

representation, obtained by composing simple but non-linear modules that each trans-

form the representation at one level (starting with the raw input) into a representation at

a higher, slightly more abstract level.

(LeCun, Bengio, and Hinton 2015)

For LeCun, Bengio, and Hinton, therefore, deep learning is a special type of representation

learning. We will start by unpacking this general definition, focusing in particular on the

general idea of multiple and hierarchical levels of representation. We will then look at

specific architectures and algorithms for deep learning.

Deep Learning and the Visual Cortex

Deep learning systems are typically constructed from multiple layers of artificial neural

networks. In that respect, deep learning is already rather different from more traditional

machine learning, which does not usually use artificial neural networks. While it is a

descendant of the connectionist models that we have explored in earlier chapters, the

design of the individual networks and the overall architecture of the systems is very

different from anything that we have looked at up to now.

Deep learning theorists often explicitly appeal to the mammalian visual cortex as a

model and inspiration. This is for two reasons. First, the mammalian visual cortex is itself a

great example of representation learning. And second, the general design of the mamma-

lian visual cortex is a blueprint for designing representation learning algorithms, particu-

larly because it is hierarchically organized, with different areas interpreting progressively

more complex and structured representations.
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You can think about the visual system as confronting a classic problem of representation

learning. The visual system has to take a complex pattern of unstructured stimuli in the

visual field and interpret them into representations that can then serve as input to more

complex cognitive functions, such as object recognition. It is a natural representation

learning system. By analogy, an artificial representation learning system has the parallel

task of taking complex and unstructured raw data and transforming it into representations

that can serve as inputs to systems carrying out more complex tasks, such as classification.

The organization and functioning of the mammalian visual cortex is relatively well

understood. There is a strong consensus among cognitive neuroscientists that information

in the visual cortex is processed hierarchically. Information flows through a progression of

different areas, each of which generates representations of increasing complexity.

The first station is the lateral geniculate nucleus (LGN), which receives input directly from

the retina. In fact, neurons in LGN have similar receptivefields to neurons in the retina. So,

really, you can think of LGN as a relay – as the gateway to the visual cortex. LGN projects to

area V1 (also known as the primary visual cortex, which maps more or less onto the

anatomically defined area known as the striate cortex, because of its conspicuous stripe).

Area V1 is where information processing proper begins.

Neurons in V1 are sensitive to low-level features of the visual field, such as orientation

and direction of movement. Like LGN, V1 is retinotopically organized – i.e., neighboring

regions of the visual field are represented by neighboring regions of V1. In broad outline,

V1 takes the retinotopic map coming from LGN and filters it in a way that accentuates

edges and the contours. This is the first step in parsing the raw data arriving at the retina

into objects.

Area V1 projects to area V2 (also known as the secondary visual cortex). Neurons in V2

are tuned to the same features as neurons in V1, as well as to more complex features, such

as shape and depth. V2 is much less well understood than V1, but neurons there are

sensitive to multiedge features such as complexes of edges with different orientations.

As we saw in Mishkin and Ungerleider’s two visual systems hypothesis in Section 3.1,

there are two distinct neural pathways for information leaving area V2. The ventral

pathway and the dorsal pathway are each believed to be responsible for different types of

visual processing.

■ The ventral pathway, thought to be responsible for object identification and recognition,

goes from V2 to V4 and then onward to areas in the inferior temporal cortex.

■ The dorsal pathway, more focused on representations relevant to action, goes from V2 to

areas V5 and V6 (also known as the middle temporal [MT] and dorsomedial [DM] areas).

We are currently interested primarily in the ventral pathway, because we are interested in

how the visual system solves the representation learning problem of mapping unstructured

stimuli in the visual field onto representations of objects in the distal environment –

representations that can serve as inputs for more complicated forms of classification and

information processing.

Area V4 takes the representations from V2, which contain primitive representations of

shapes and some information about depth, and then uses those representations to
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construct further representations that incorporate more information about figure/ground

segmentation, as well as about colors. Area V4 is thought to be the first stage in early visual

processing that is modulated by attention. Representations leaving V4 then go to the

inferior temporal cortex (ITC), where there are various areas specialized for sensitivity to

high-level patterns. Areas in the ITC include the fusiform face area (FFA), thought to be

specialized for face recognition, and the fusiform body area (FBA), believed to be dedicated

to identifying the human body and body parts.

The general pattern in the visual cortex is increasing determinacy of representation,

with different areas in each pathway using the outputs of earlier areas to identify increas-

ingly complex features and complexes of features. You can think about the different areas

in the ventral pathway, for example, as forming a hierarchy. The information-processing

hierarchy built into the ventral hierarchy is illustrated in Figure 12.6.

The reason for looking at the visual cortex in such detail is that this type of hierarchical

information-processing is (by design) exactly what we find in many deep learning systems.

Deep learning often involves multiple layers of information processing, each building on

the outputs of earlier layers.

The general reasoning behind this approach is explained clearly in LeCun, Bengio, and

Hinton 2015:

Deep neural networks exploit the property that many natural signals are compositional

hierarchies, in which higher-level features are obtained by composing lower-level ones.

In images, local combinations of edges form motifs, motifs assemble into parts, and

parts form objects. Similar hierarchies exist in speech and text from sounds to

phonemes, syllables, words and sentences. The pooling allows representations to vary

very little when elements in the previous layer vary in position and appearance.

If, as the authors point out, many natural signals are hierarchically organized, then a deep

learning system has to learn two things. First, it has to learn how to extract the bottom-

level features. And then, second, it has to learn how to compound them to yield an

accurate representation of the input in much the same way as the mammalian visual

system has learned through evolution to parse the light energy hitting the retina into

representations of objects.

Figure 12.6 An illustration of hierarchical visual processing. Stimuli are processed in a series of

visual areas, which process features of increasing complexity. (Figure 1 from Manassi, Sayim, and

Herzog 2013)
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Perhaps the principal challenge in doing this is to solve what LeCun, Bengio, and

Hinton call the selectivity/invariance problem, which they illustrate with a canine example.

Samoyeds are beautiful white dogs from the husky family. Imagine that you are trying to

construct a system that will identify Samoyeds and distinguish them from other animals.

Since Samoyeds have long fur, it is easy enough to distinguish them from short-haired dogs

such as greyhounds. But what about distinguishing Samoyeds from their distant relative,

the wolf?

The system needs to develop a highly selective representation of a Samoyed, one that will

pick up on the relatively small differences between a Samoyed and a white wolf. But at the

same time, the representation needs to be invariant in a way that ignores the conspicuous

differences between what the animal looks like from different angles and in different

postures. To illustrate the problem, think about how similar a Samoyed and a white wolf

would look if they were both sitting down and viewed face on, and compare it to how

different two Samoyeds would look if one was lying down and viewed from above, while

the other was running and viewed from in front.

Deep neural networks are able to solve the selectivity/invariance problem because

they are constructed as multilayered stacks of simple network. Each network

performs a mapping from input to output, with the output from a given network serving

as the input to the next network in the stack (just as the output of area V1 in the visual

cortex is the input to area V2). Each of those mappings codes the input in terms of

increasingly complex features (just as area V4 takes the primitive shapes in the output

from area V2 and segments them into figure and ground to enhance the representation

of depth).

The details of how this process works are extremely technical, but there are two funda-

mental types of neural network that feature in many deep learning systems and that can be

explained in a relatively nontechnical way. The first are called autoencoders. The second are

called convolutional neural networks. We turn to them in the next section.

12.3 The Machinery of Deep Learning

A typical deep learning system is a multilayered stack of neural networks. In many respects,

these neural networks are similar to many of the neural networks that we looked at in

Chapter 5 and then again in Chapters 10 and 11. For example,

■ they are often feedforward; that is, activation flows through the network in one direction – it

does not loop back in feedback loops

■ they contain hidden layers, in which the real information-processing work of the network

gets done

■ and they often learn through forms of backpropagation, with an error signal at the output

from the network used to adjust the weights of units in the hidden layers

But the individual networks within deep neural networks also incorporate several features

that we have not yet looked at.
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In this section, we’ll start by looking at a type of neural network called an autoencoder.

Autoencoders are a very nice example of how a network can learn to extract features from

unstructured raw data. Then we turn to what was probably the most important innovation

in the deep learning revolution, namely, the development of convolutional neural net-

works (ConvNets). ConvNets are a special kind of feedforward neural network, particularly

suited to processing data organized in a grid-like format (a photograph, for example, or the

human visual field).

Autoencoders

Think about the party game of charades. When you play charades, your job is to take a

word or phrase and then mime it out so that the other players can guess what you started

with. In other words, you take a signal as input and then represent it in such a way that the

original signal can be recovered as output. Your mime performance is the representation

and the other players’ guess is the output. You have been successful if the output matches

the input (i.e., if the other players come up with the word you started with).

This is pretty much what an autoencoder does. It is a single neural network that learns to

match output to input. This might seem a very trivial thing to aim for – surely all the

network has to do is repeat the input, which would guarantee success? But the point of an

autoencoder is that it has constraints built into it that prevent it from solving the problem

so simply – just as the rule in charades that you are only allowed to mime prevents you

from simply telling the other players the word or phrase you started with. These constraints

effectively force the network to find a simplified representation of the input. The repre-

sentation needs to be simplified enough to satisfy the constraints built into the network,

but not so simplified that the network cannot recover the original signal.

To put this all a little more technically, an autoencoder is a feedforward neural network

whose job it is to approximate the identity function. It has two components. One compon-

ent encodes the original signal, while the other decodes it. Both encoding and decoding are

done by hidden layers. The aim of the network is to minimize the difference between input

and output, and it is trained through some form of error minimization algorithm such as

backpropagation. An autoencoder will typically have built into it some type of bottleneck

that forces the network to find a more compressed way of representing the input.

So, for example, if the network has 100 input units and 100 output units, then the

bottleneck might be a hidden layer with only fifty units. This constraint forces the network

to compress an input signal that has 100 dimensions of variation into a representation that

only allows variation in 50 dimensions. The network has to find key features of the input

signal that will allow the encoded representation to be decoded back to something close to

the original signal. Looking at it like this explains why feature learning is sometimes called

dimensionality reduction.

There are two illustrations of autoencoders in Figure 12.7. The left-hand diagram is a

schematic wiring diagram for an autoencoder neural network, while the second shows

what such a network might actually do.
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Autoencoders can be used to pretrain deep neural networks, as an alternative both to

startingwith a randomassignment ofweights and to using some formof supervised learning

process (where the network is given explicit feedback). Here is how it works. The auto-

encoder learns to compress its input signal in such a way that that signal can be decoded

fairly accurately. This is a form of feature learning. What the network is doing is picking up

on salient features in the input and using those features to encode the original signal. Once

the network has learned to do this, it will encode any relevantly similar input signal in the

same way. So, now the encoding component of the autoencoder can be built into a deep

neural network as one of its layers.

To illustrate this, we can go back to our visual system example. Imagine that we are

trying to build a deep neural network that approximates visual processing in the ventral

stream (not as fanciful as it sounds – as we’ll see shortly, this has actually been done). So,

we need to build into it a network that will carry out edge detection. One possibility would

be to train an autoencoder on images relevantly similar to those serving as inputs to

area V1.

As the autoencoder learns to compress and decompress those images, it effectively learns

to encode images as complexes of edges. We can then bypass the decoding component

of the autoencoder and wire the bottleneck hidden layer up so that it becomes the input

into the layer of the deep neural network corresponding to area V2. And then we might

repeat the same process with an autoencoder that would learn to carry out V2-type feature

detection, developing sensitivity to multiedge features.

Figure 12.7 Illustration of how an autoencoder compresses and then decompresses a signal.

(Reproduced by permission of Lilian Wengweng)
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Exercise 12.3 Explain in your own words the basic idea behind an autoencoder.

In practice, there are better and more effective ways of constructing deep and multilayer,

neural networks (e.g., by using the convolutional networks that we will look at next). But

autoencoders are a good illustration of some basic deep learning principles.

Convolutional Neural Networks

For a long time, computer vision was a final frontier for AI. It seemed almost impossible to

design an artificial system to perform even a tiny fraction of the complicated visual infor-

mation processing that a human child or adult performs almost every waking second of

their lives. That has all changed in the last few years. The capabilities of the best modern

machines are now not far short of their human models. This in turn is making possible a

tsunami of technological advances, from facial recognition software in cellphones to self-

driving cars. Convolutional neural networks (ConvNets) are playing a key role in this

technological transformation.

The power of ConvNets was first revealed at a machine vision competition in 2012. The

ImageNet Large-Scale Visual Recognition Challenge uses the massive ImageNet database

created by Li Fei-Fei and Kai Li, on the faculty at Stanford and Princeton, respectively.

ImageNet is actually derived from a lexical database called WordNet, which classifies

English words and expressions into classes of synonyms called synsets. The goal of Word-

Net is really to provide an exhaustive catalog of all the concepts expressible in English.

There are around 100,000 synsets in WordNet (around 80 percent associated with nouns

and noun phrases) and ImageNet contains on average 1,000 images for each synset – and

so contains around 10 million images in total.

Computer vision algorithms entered into the ImageNet competition had two different

tasks to perform on a test database of images. Thefirst task was to decide, for an evaluation set

of image-category pairs, whether each image actually contained an example of an

object from the relevant category (whether the image contained a washing machine,

for example). The second task was to identify a specific object within an image and place a

box around it (e.g., to identify a screwdriver centered on a specific pixel in the image).

The ImageNet competition started in 2010. Two years later, in 2012, a team from the

University of Toronto entered a program called SuperVision. The team was led by

Geoffrey Hinton who had been an early pioneer of the backpropagation learning for

neural networks and then in the early 2000s was one of the researchers at CIFAR (the

Canadian Institute for Advanced Research) responsible for the development of deep learning.

SuperVision was wildly successful. Its error rate on the test data set was only 16.4

percent. In comparison, the programs that won the competition in 2010 and 2011 had

error rates of 28.2 percent and 25.8 percent, respectively, and the second-place program in

2012 had an error rate of 26.2 percent.

SuperVision’s secret? As you’ve probably guessed, it was one of the first computer vision

programs to use a convolutional neural network. The success of ConvNets in object
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recognition and related tasks has been so compelling that almost all modern computer

vision programs use them. And in fact, it did not take long to use ConvNets to develop

programs much more successful even than SuperVision. The winner of the 2014 ImageNet

competition, a program created by engineers from Google called GoogLeNet, had an error

rate of only 6.7 percent.

ConvNets use a different type of mathematics from traditional neural networks. In

traditional neural networks, activation spreads through the network via a form of matrix

multiplication. This works because you can represent the activation level of neurons in

each layer and the network weights as arrays of numbers (matrices). We can think of

activation spreading through a neural network as a function of the activation levels of

individual units and the weights that those individual units have. Matrix multiplication is

the mathematical tool for combining arrays of numbers.

Convolution is a more complex mathematical operation. Basically, it creates a type of

filter that functions as a localized feature detector. Imagine a grid composed of 10,000

pixels (organized in a square with dimensions 100 Â 100). A convolutional layer will

successively examine subgrids of this grid to filter out everything except the particular

feature that it has been trained to detect. You can think of the process as a little square

window (of size, say, 5 Â 5) scanning the grid to detect edges, for example.

A ConvNet is a network that has at least one convolutional layer. According to Deep

Learning, an influential textbook written by Ian Goodfellow, Yoshua Bengio, and Aaron

Courville, ConvNets are designed with three characteristic features that together make

them highly suited to processing data that has a grid-like organization (such as an image

for example). Here they are (in slight different terminology):

■ sparse connectivity

■ shared weights

■ invariance under translation

We will look at these in order.

Sparse Connectivity

Like many traditional neural networks, ConvNets are feedforward. So, activation flows

through the network, without any feedback loops. And they have multiple hidden layers.

But the wiring is crucially different. In a traditional neural network, each unit in a given

layer is connected to all the units in the previous layer and to all the units in the following

layer. In other words, each unit is fully connected.

In contrast, the hidden layers in ConvNets are typically not fully connected. Each unit is

wired to receive inputs only from a small number of units in the preceding layer, and it

projects forward only to a small number of units in the next layer. This means that units are

in effect specialized to respond to local regions of the input to any given layer. So, thinking

about this general idea as it might apply to machine vision, you can think of individual

units as specialized to respond to particular regions of the visual array.

The Machinery of Deep Learning 325



The sparse connectivity feature of ConvNets is directly inspired by the mammalian

visual system. As we saw earlier, information-processing in the early visual system often

takes as input retinotopic maps that are more or less isomorphic to the patterns of light

energy reaching the retina. Individual neurons in, say, area V1 have a receptive field that

only covers a small part of that retinotopic map. By analogy, you can think of a given unit’s

receptive field as the units that project to it.

Shared Weights

In ConvNets, as in traditional neural networks, every unit has a weight and learning takes

place through changes in the weights. A unit’s weight is really a measure of how much it

contributes to the overall behavior of the network – a low weight indicates a small

contribution and increasing the weight increases the significance of the unit to the

network.

Characteristically, all the weights in a given layer of a traditional network are completely

independent of each other. Each unit learns on its own, as it were. The backpropagation

learning algorithm, for example, works by assigning to each individual unit a share in the

responsibility for the overall degree of error. It then adjusts the weights of each unit to

reduce the error attributable to that unit, which has the result of reducing the error in the

network as a whole.

In ConvNets, on the other hand, there are dependencies between the weights of

different units. A ConvNet might have multiple units with the same weight. Or it might

have units whose weights are a function of the weights of other units. This feature adds

further to the efficiency of ConvNets relative to traditional networks. Sparse connectivity

means that ConvNets have fewer connections. Fewer connections means fewer computa-

tions as activation flows through the network. Reducing the number of different weights

involved reduces the overall number of computations still further.

Invariance under Translation

The last distinguishing feature of ConvNets arises from the first two, and in particular from

how the shared weights are set up. To understand it, think again about hierarchical infor-

mation processing in the visual system. We saw that the various areas in the ventral stream

generate a succession of map-like representations of the distal environment, with eachmap

building on earlier maps and adding more complex features. Simplifying somewhat, each

area takes an input map, analyzes it, and then produces a richer output map. This process

works because the structure of the original map is preserved through a series of successive

transformations.

Now, the visual system often has to process retinal images derived from similar scenes –

or from different perspectives on the same scene. It would be desirable for similarities in

structure to be preserved across different episodes of vision. For an example, consider how
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the object recognition systems in the inferior temporal cortex might recognize that the

object you are now looking at is the same object you were looking at from a different angle

a couple of minutes ago. The object recognition systems need to pick up on both similar-

ities and differences. It needs to be sensitive to similarities to register that this is indeed the

same object, but at the same time it needs to be sensitive to differences in the object’s visual

appearance due to the changed angle.

For the object recognition systems to be sensitive to similarities and differences in this

way, it must be the case that similar sorts of changes in objects produce similar sorts of

changes in the images that represent them. So, for example, whenever an object moves a

certain distance to the left, the image of the object will move a certain distance to the left in

the map that the visual system is building of the distal environment. This is the property of

invariance under translation. ConvNets have the property of invariance under translation

because changes in the input are systematically reflected in the output.

Exercise 12.4 Write down brief definitions in your own words of the three characteristic features

of ConvNets.

To conclude, then, ConvNets incorporate a range of features that make them particu-

larly well suited to processing information that comes in a grid-like format. That is why

they are so successful at object recognition and why they now dominate machine vision.

But many types of information can be presented in a grid-like format. Linguistic infor-

mation is an example. A sentence, after all, is really just a 1D grid of words. And so, it is not

surprising that ConvNets have also been successfully applied in natural language process-

ing. They have proved surprisingly good at speech recognition and semantic parsing, even

though they have no linguistic information coded into them.

12.4 Deep Reinforcement Learning

One of the main themes emerging from our discussion of deep learning is how biologically

inspired it is. On a large-scale, deep neural networks are typically constructed in multiple

layers to implement hierarchical information-processing explicitly modeled on

information-processing in the primate visual system. On a smaller scale, the sparse con-

nectivity and shared weights that we find in convolutional neural networks is much more

neurally plausible than the full connectivity and atomistic learning that we find in trad-

itional neural networks. We turn now to another example of biologically plausible deep

learning.

As was extensively covered in the national and international press, the AlphaGo program

created by Google’s Deep Mind research group has been spectacularly successful at beating

the world’s leading experts at the game of Go. At the Future of Go summit in 2017, AlphaGo

defeated Ke Jie, the number 1 player at the time, building on previous victories in 2016

(watched by tens of millions of people worldwide) over Lee Sedol, also one of a handful of

top human Go players. These victories were widely recognized as historic achievements for
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AI. Go is even more complex than chess, since games are longer and there are many more

legally permissible moves available (250 for Go, as opposed to 35 for chess).

AlphaGo was initially trained on a massive database of 30 million moves from an online

server. The training was a form of supervised learning, with AlphaGo receiving explicit

feedback on how successful it was. Once AlphaGo had achieved a relatively high level of

playing strength, the training shifted to reinforcement learning. This is what we will

focus on.

Reinforcement learning is not like any of the types of machine learning we have looked

at up to now. Reinforcement learning differs from supervised learning. The network does

not receive explicit feedback on how well it is doing, and it is not learning from a labeled

training set. But nor is reinforcement learning a form of unsupervised learning, which is

what we find in convolutional neural networks. In unsupervised learning networks learn to

detect patterns in data. An unsupervised network might learn to become an edge detector,

for example.

Reinforcement learning is distinctive because (unlike unsupervised learning) it does

depend upon a feedback signal. But at the same time (unlike supervised learning) the

feedback signal does not tell the network exactly what it has done wrong. Instead,

reinforcement learning is driven by a reward signal. The job of a network incorporating a

reinforcement learning algorithm is to maximize the reward. But it is not told how to do

that. It has to work out for itself which outputs are most profitable, so that it can repeat

and/or adapt them.

Here is a way of thinking about the feedback that drives reinforcement learning. The

network is not receiving instructions. It is not being trained on typical exemplars of a

classification task, for example. Nor is it being told how accurately it is performing the task.

Instead its output is being evaluated through the reward signal. Once it has received the

Figure 12.8 A move in the Google DeepMind challenge between AlphaGo and Lee Sedol

in 2016. (Handout/Getty Images)
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evaluation/reward, it has to learn how to adapt the output to increase the reward. In a

slogan, supervised learning proceeds through instruction, while reinforcement learning proceeds

through reward.

Because the feedback in reinforcement learning is indirect, the network will have to

engage in a degree of trial and error. The network will not increase its reward simply by

repeating what has worked in the past. It needs to try strategies that it has not tried before

in order to see whether they work better than current ones. So, successful reinforcement

learning involves striking a balance between exploring new strategies and sticking to tried

and tested strategies.

Reinforcement learning in AlphaGo was achieved by getting the network to play games

of Go against former versions of itself (in fact, these former versions of itself were selected at

random from earlier iterations of the supervised learning process). The reward signal was

very simple: +1 for a win and –1 for a loss. AlphaGo then used a learning algorithm called

stochastic gradient descent. Stochastic gradient descent works to reduce error (or, as it is often

put, to minimize a cost function), where the error is the negative reward that comes from

losing. The algorithm changes the weights in the network so that the negative reward

eventually becomes a positive reward.

So, AlphaGo’s training was a mixture of supervised learning and reinforcement learning.

Human participation was crucial to the supervised learning phase, and then dropped out of

the picture for the reinforcement learning phase. You might be wondering, then, whether

it is possible to cut the human piece out of the equation completely. Could a network be

trained from scratch to play Go, using only reinforcement learning and without any access

to databases of position and games, or any kind of expert knowledge?

Well, a few months after officially retiring AlphaGo, the team at DeepMind announced a

new version of the program, which they called AlphaGo Zero. As its name suggests, AlphaGo

Zero incorporates zero supervised learning. The only thing it knows about Go when it starts

is the rules, and so it starts off playing completely at random. Using an updated reinforce-

ment learning algorithm, the network modifies its weights by playing against itself.

It turns out that AlphaGo Zero learned very quickly to beat previous iterations of

AlphaGo. After three days (and 4.9 million games played against itself ), it was able to beat

the version of AlphaGo that had defeated Lee Sedol in 2016 – and it was a decisive victory,

by 100 games to 0. Within forty days it was playing Go well enough to beat all existing

versions of AlphaGo. Moreover, it was computationally much more efficient than

AlphaGo, consuming only a fraction of the power and using only four of Google’s propri-

etary TPU (tensor processing unit) chips.

Reinforcement learning is clearly a very powerful tool for machine learning. We can

close this discussion by observing two very important respects in which reinforcement

learning is significant from a broader AI perspective. AI is not just about building powerful

programs and algorithms that will harness the power of supercomputers to solve difficult

problems. AI is also about developing techniques that are recognizably intelligent. And an

important index of intelligence in computer programs is that they solve problems in ways

similar to how we humans solve them (as opposed to beating them into submission by

sheer computational power).
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So, with that in mind, we need to observe that reinforcement learning is the most

widespread and powerful form of learning in the animal kingdom. Behaviorists may not

be correct that all learning is ultimately reinforcement learning (or, in a different termin-

ology, instrumental conditioning). But there is no doubt that many, if not most, intelligent

behaviors in humans and animals are the result of an exquisite sensitivity to action-reward

contingencies. By incorporating reinforcement learning, therefore, deep neural networks

can make a strong claim to being intelligent problem-solvers.

And in fact, the biological plausibility of reinforcement learning algorithms in deep neural

networks goes even deeper. There is intriguing evidence from neuroscience that important

learning mechanisms in the brain incorporate elements that we also find in reinforcement

learning algorithms. The key findings here come from studies of the neurotransmitter

dopamine (a neurotransmitter is a chemical released by neurons to send signals to other

neurons). Dopamine is known to be deeply implicated in reward processing (and for that

reason has been much studied in the context of addiction).

Pioneering studies of dopaminergic neurons during the 1990s led to the reward prediction

error hypothesis of dopamine activity. According to this hypothesis, first proposed by Read

Montague, Peter Dayan, and Terrence Sejnowski in 1996, the job of dopaminergic neurons

is to fire when the actual reward differs from the expected reward. In other words, to tie this

back to machine learning, dopaminergic neurons provide a reward-based error signal,

which is exactly what is needed for reinforcement learning. Moreover, although the details

are too technical to go into here, it turns out that there are striking parallels between the

firing behavior of dopaminergic neurons and how the reward signals are processed in

widely used gradient descent learning algorithms.

Summary

Section 12.1 showed how machine learning algorithms can construct expert systems that can in

turn reproduce (and in some cases improve upon) the performance of human experts in tasks such

as medical diagnosis and processing mortgage applications. We looked at a specific example in the

ID3 algorithm. In Section 12.2 we looked at the limits of traditional machine learning, and in

particular its dependence upon lengthy and complex processes of feature engineering to label and

organize databases. Representation learning is the subfield of machine learning dedicated to

constructing algorithms that will carry out feature engineering on raw data. The most successful

examples of representation learning have come from deep learning neural networks, which we

looked at in Sections 12.2, 12.3, and 12.4.

Deep learning networks are hierarchically organized, on the model of the mammalian visual

cortex. A deep learning network is made up of layers of individual neural networks, each

responsible for extracting more complex features from the original raw data. We looked at two

examples of neural networks that can feature in layers of deep learning networks – autoencoders

and convolutional neural networks. In Section 12.4 we looked at a further type of learning –

reinforcement learning, which is neither supervised learning nor unsupervised. We saw how
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reinforcement learning algorithms made possible two of the most spectacular examples of deep

learning – the AlphaGo and AlphaGo Zero programs created by Google’s Deep Mind

research team.

Checklist

Expert Systems and Machine Learning

(1) Expert systems are designed to reproduce the performance of human experts in particular domains

(e.g., medical diagnosis or financial services).

(2) Expert systems typically employ decision rules that can be represented in the form of a

decision tree.

(3) One problem studied in the field of machine learning is developing an algorithm for generating a

decision tree from a complex database.

(4) Generating a decision tree in this way is an example of Newell and Simon’s heuristic search

hypothesis.

The ID3 Machine Learning Algorithm

(1) ID3 looks for regularities in a database of information that allow it to construct a

decision tree.

(2) The basic objects in the database are called examples. These examples can be classified in terms of

their attributes. Each feature divides the examples up into two or more classes.

(3) ID3 constructs a decision tree by assigning attributes to nodes. It assigns to each node the attribute

that is most informative at that point.

(4) Informativeness is calculated in terms of information gain, which is itself calculated in terms of

entropy.

Representation Learning and Deep Learning

(1) Problem solving is often highly dependent upon how data sets are labeled through feature

engineering, typically carried out by human experts.

(2) Traditional machine learning algorithms such as ID3 work on databases that are already highly

organized and labeled.

(3) Representation learning is the subfield of machine learning dedicated to designing algorithms that

will do their own feature engineering on raw data.

Deep learning is a special kind of representation learning, carried out by multilayered

artificial neural networks, hierarchically organized to extract increasingly complex

features from input raw data.

(1) The hierarchical organization of deep learning networks is inspired by the hierarchical organization

of the mammalian visual system.

(2) An autoencoder is an example of a deep learning network that can learn to extract features from

raw data.

(3) Autoencoders compress raw data through a bottleneck so that it can subsequently be decoded.
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(4) Convolutional neural networks (ConvNets) are particularly well suited to feature engineering in

data presented in a grid-like format.

(5) ConvNets have been spectacularly successful in machine vision.

(6) ConvNets feature (a) sparse connectivity, (b) shared weights, (c) invariance under translation.

Reinforcement learning is a type of machine learning distinct both from supervised

learning (in which networks are given explicit feedback on what they have done wrong)

and unsupervised learning (such as representation learning).

(1) In reinforcement learning networks receive a reward signal, rather than an explicit error signal.

(2) Reinforcement learning algorithms aim to maximize expected reward, and so they need to engage

in trial and error to discover new reward-generating strategies.

(3) Reinforcement learning is key to the two Go-playing networks, AlphaGo and AlphaGo Zero,

developed by Google’s Deep Mind research team.

(4) Reinforcement learning is biologically plausible, both because reinforcement learning is the most

common type of learning in the animal kingdom, and because of intriguing parallels between the

firing activity of dopaminergic neurons and how reward signals are processed in widely used

learning algorithms.

Further Reading

Much of the literature in traditional machine learning is very technical, but there are some

accessible introductions. Haugeland 1985 and Franklin 1995 remain excellent introductions to the

early years of AI research. Russell and Norvig 2009 is much more up to date. Also see Poole

and Mackworth 2010, Warwick 2012, and Proudfoot and Copeland’s chapter on artificial

intelligence in The Oxford Handbook of Philosophy of Cognitive Science (Margolis, Samuels, and

Stich 2012). Medsker and Schulte 2003 is a brief introduction to expert systems, while Jackson

1998 is one of the standard textbooks. The Encyclopedia of Cognitive Science also has an entry on

expert systems (Nadel 2005). See the online resources for a very useful collection of machine

learning resources.

The application of ID3 to soybean diseases described in Section 12.2 was originally reported in

Michalski and Chilausky 1980. The database for the tennis example explored in Section 12.1

comes from chapter 3 of Mitchell 1997. Wu et al. 2008 describes more recent extensions of ID3,

including C4.5 and C5.0, as well as other data mining methods.

LeCun, Bengio, and Hinton 2015 is an article-length introduction to deep learning and the

source of the definition of deep learning in Section 12.2. For more detailed discussion of the

theoretical background, see the textbook Deep Learning (Goodfellow, Bengio, and Courville 2016),

which is also available online for free by agreement with the publisher at

www.deeplearningbook.org. For a direct deep learning model of the visual cortex, see Cadieu

et al. 2014. For the SuperVision program entered in the ImageNet competition in 2012, see

Krizhevsky, Sutskever, and Hinton 2012.

332 Machine Learning: From Expert Systems to Deep Learning



The Deep Mind research group at Google has a website at www.deepmind.com and has

published articles in Nature on AlphaGo (Silver et al. 2016) and AlphaGo Zero (Silver et al. 2017).

For a more general discussion of reinforcement learning, the classic textbook is Sutton and Barto

1998, with a second edition currently in preparation and available online in draft form from

Richard Sutton’s website at www.incompleteideas.net. Chapter 15 of the second edition covers

the neuroscience dimension of reinforcement learning. The pioneering paper on the reward

prediction error hypothesis was Montague, Dayan, and Sejnowski 1996. For a survey of the theory

and experimental support, see Glimcher 2011.
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Overview

This chapter introduces what is often called mindreading. This is a very general label for the skills

and abilities that allow us to make sense of other people and to coordinate our behavior with

theirs. Our mindreading skills are fundamental to social understanding and social coordination.

The dominant model of mindreading in cognitive science emerged from studies of pretending in

young children. Section 13.1 presents the information-processing model of pretense proposed by

the developmental psychologist Alan Leslie. In Section 13.2 we build up from pretending to

mindread, looking in particular at the false belief task, which tests young children’s understanding

that other people can have mistaken beliefs about the world.

The central feature of Leslie’s model is what he calls the theory of mind mechanism (TOMM).

The TOMM’s job is to identify and reason about other people’s propositional attitudes (complex

mental states, such as beliefs, desires, hopes, and fears). Section 13.3 introduces a model of the

entire mindreading system developed by the developmental psychologist and autism specialist

Simon Baron-Cohen in response to a wide range of experimental data both from normal

development and from autism and other pathologies.
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13.1 Pretend Play and Metarepresentation

Developmental psychologists think that the emergence of pretend play is a major milestone

in cognitive and social development. Children start to engage in pretend play at a very

young age, some as early as 13 months. Normal infants are capable of engaging in fairly

sophisticated types of pretend play by the end of their second year. The evidence here is both

anecdotal and experimental. Developmental psychologists such as Jean Piaget have carried

out very detailed longitudinal studies of individual children over long periods of time. There

have also been many experiments exploring infants’ emerging capacities for pretend play.

The development of pretend play in infancy appears to follow a fairly standard trajec-

tory. The most basic type is essentially self-directed – with the infant pretending to carry out

some familiar activity. The infant might, for example, pretend to drink from an empty cup,

or to eat from a spoon with nothing on it. The next stage is other-directed, with the infant

pretending that some object has properties it doesn’t have. An example of this might be the

infant’s pretending that a toy vehicle makes a sound, or that a doll is saying something.

A more sophisticated form of pretense comes with what is sometimes called object substitu-

tion. This is when the infant pretends that some object is a different object and acts

accordingly – pretends that a banana is a telephone, for example, and talks into it. Infants

are also capable of pretense that involves imaginary objects. Imaginary friends are a well-

known phenomenon.

Some forms of pretend play exploit the young infant’s emerging linguistic abilities.

Others exploit the infant’s understanding of the different functions that objects can play.

A common denominator in all instances of pretend play is that in some sense the infant is

able to represent objects and properties not perceptible in the immediate environment – or

at least, not perceptible in the object that is the focus of the pretense (since there may be a

telephone elsewhere in the room, for example).

The Significance of Pretend Play

Alan Leslie calls the infant’s basic representations of the environment its primary representa-

tions. Primary representations include both what the infant perceives, and its stored

knowledge of the world.

Leslie’s model of infant pretense starts off from three basic observations:

1 Pretend play in the infant depends crucially on how the infant represents the world (and hence on

her primary representations). If an infant pretends that a banana is a telephone, then she

must be representing the banana to start with. The infant is in some sense taking her

representation of a banana and making it do the job of a representation of a telephone.

Similarly, the infant cannot represent a toy car as making a noise unless she is representing

the car.

2 We cannot explain what is going on in pretend play simply with reference to the infant’s primary

representations. We cannot assume that the infant is somehow coordinating her banana
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representation and her telephone representation. The problem is that the primary

representation and the pretend representation typically contradict each other. After all, the

banana is a banana, not a telephone.

3 The pretend representations must preserve their ordinary meanings in pretend play. During

pretend play the infant cannot lose touch of the fact that, although she is pretending that

it is a telephone, what she has in front of her is really a banana. Likewise, representing the

banana as a telephone requires representing it as having the properties that telephones

standardly have.

Putting these three ideas together, Leslie arrived at the idea that, although representations

in pretend play have their usual meaning, they cannot actually be functioning as primary

representations. They are somehow “quarantined” from ordinary primary representations.

Without this sort of quarantining, the infant’s representations of the world would be

completely chaotic. One and the same cup would be both empty and contain water, for

example. The key problem is to explain how the quarantining takes place.

Leslie’s explanation rests upon a very basic parallel between how representations func-

tion in pretend play and how they function when we are representing other people’s

mental states in mindreading. When we represent what other people believe or desire,

we do so with representations that are also quarantined from the rest of our thinking about

the world.

Suppose, for example, that I utter the sentence “Sarah believes that the world is flat.”

I am asserting something about Sarah, namely, that she believes that the world is flat. But

I am certainly not saying that the world is flat. If I were to utter the words “the world is flat”

on their own, then I would standardly be making an assertion about the world. But when

those very same words come prefixed by the phrase “Sarah believes that . . .” they function

very differently. They are no longer being used to talk about the world. I am using them to

talk about Sarah’s state of mind. They have become decoupled from their usual function.

Leslie on Pretend Play and Metarepresentation

Let us look at this in more detail. When I describe Sarah as believing that the world is

flat the phrase “the world is flat” is being used to describe how Sarah herself represents

the world. Philosophers and psychologists typically describe this as a case of metarepresen-

tation. Metarepresentation occurs when a representation is used to represent another

representation, rather than to represent the world. The fact that there is metarepresenta-

tion going on changes how words andmental representations behave. They no longer refer

directly to the world. But they still have their basic meaning – if they lost their basic

meaning then they couldn’t do the job of capturing how someone else represents

the world.

The basic picture is summarized in Figure 13.1. As the figure shows, my primary

representations can serve two functions. They can represent the world directly. This is the

standard, or default use. But they can also be used to metarepresent someone else’s primary

representations. This is what goes on when we engage in mindreading.
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Leslie’s basic idea is that primary representations function exactly the same way in

pretend play as when used to metarepresent someone else’s state of mind. In both cases,

primary representations are decoupled from their usual functions. In fact, Leslie argues, the

mechanism that decouples primary representations from their usual functions is exactly

the same in pretend play and in mindreading. The structure of Leslie’s model is outlined in

Figure 13.2.

Two features of the model deserve more discussion. First, the model incorporates a way

of marking the fact that a primary representation has been decoupled and is now being

used for pretend play. Second, it includes a way of representing the relation between agents

and decoupled representations.

Leslie proposes that decoupling is achieved by a form of quotation device. In ordinary

language we use quotation marks to indicate that words are being decoupled from their

normal function. In fact, we often do this when we are reporting what other people have

said. So, for example, the following two ways of reporting what Sarah said when she

expressed her belief that the world is flat are more or less equivalent:

Objects and 
properties in the 

world

My primary repre-
sentations of those 

objects and 
properties

Sarah’s primary 
representations of 
those objects and 

properties

Represent

Represent

Metarepresent

Figure 13.1 An example of metarepresentation. Metarepresentation involves second-order

representations of representations. In this example, I am representing Sarah’s representations of

certain objects and properties in the world.
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(1) Sarah said that the world is flat.

(2) Sarah said: “The world is flat.”

The second report contains a device that makes explicit the decoupling that is achieved

implicitly in the first report. His suggestion, then, is that the physical symbol system

responsible for pretend play contains some sort of quotation device that can be attached

to primary representations to mark that they are available for pretend play.

Exercise 13.1 (1) and (2) are not completely equivalent. Explain why not.

How are decoupled primary representations processed in pretend play? Leslie’s meta-

represention system contains a special operation, which he calls the PRETEND operation.

The subject of the PRETEND operation is an agent (which may be the pretending infant

himself ). The PRETEND operation is applied to decoupled primary representations. But

these are not pure decoupled representations. The essence of pretend play is the complex

interplay between ordinary primary representations and decoupled primary representa-

tions. Leslie’s model aims to capture this with the idea that decoupled representations are,

as he puts it, anchored to parts of primary representations.

Let’s go back to our example of the infant pretending that the banana is a telephone.

The infant’s representation of the banana is decoupled and then anchored to her primary

representation of a telephone. Leslie would represent what is going on here in the

following way:

I PRETEND “This banana: it is a telephone.”

The object of the PRETEND operation is the complex representation: “This banana: it is a

telephone.” As the quotation marks indicate, the complex representation as a whole is

decoupled. But it is made up of two representations – a (decoupled) representation of a

banana and an ordinary representation of a telephone. The ordinary representation of the

telephone is the anchor for the decoupled representation of the banana.

World

Primary representation

(e.g. perception)

Metarepresentation

(decoupled copy of primary 
representation for reconstruction)

Action

(e.g. reality play)

Action

(e.g. pretend play)

Figure 13.2 The general outlines of Leslie’s model of pretend play. (Adapted from Leslie 1987)
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The details of Leslie’s model of pretense can be seen in Figure 13.3. Here is how it works.

■ Information goes from central cognitive systems into what Leslie calls the Expression

Raiser. This is the system that decouples primary representations – by placing them

within some analog of quotation marks.

■ Decoupled primary representations can then be fed into the Manipulator, which applies

the PRETEND operation as described earlier.

■ The job of the Interpreter is to relate the output of the Manipulator to what

the infant is currently perceiving. The Interpreter essentially controls the episode of

pretend play. Pretend play requires certain inferences (for example – the

inference that, since the telephone is ringing, I must answer it). These are

implemented in the Interpreter, using general information about telephones stored in

central systems.

Leslie’s model explains both how infants can engage in pretend play, and how they can

understand pretense in other people. In Figure 13.3 the infant herself is the agent of the

PRETEND operation, but the agent could equally be someone else. This allows the infant to

engage in collaborative pretend play – and, moreover, gives her an important tool for

making sense of the people she is interacting with.

PERCEPTUAL

PROCESSES

INTERPRETER

MANIPULATOR

I Pretend
“This banana is a telephone”

EXPRESSION RAISER

“This is a banana”

CENTRAL

COGNITIVE

SYSTEMS

Telephone

Action

DECOUPLER

Figure 13.3 Leslie’s Decoupler model of pretense. This model makes explicit how the right-hand

side of Figure 13.2 is supposed to work. (Adapted from Leslie 1987)
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The Link to Mindreading

Understanding that other people are pretending is itself a form of mindreading. In this

sense, therefore, Leslie’s model of pretense is already a model of mindreading. But, as Leslie

himself points out, the basic mechanism of metarepresentation at the heart of the model

can be applied much more widely to explain other forms of mindreading. This is because

many forms of mindreading exploit decoupled representations, as we saw earlier. And so,

once the basic mechanism of decoupling is in place, being able to perform other types of

mindreading depends upon understanding the corresponding operations.

So, we might expect there to be operations BELIEVE, DESIRE, HOPE, FEAR, and so on,

corresponding to the different types of mental state that a mindreader can identify in other

people. These operations will all function in the same way as the PRETEND operation. At

an abstract level these operations are all applied to decoupled representations. In order to

represent an agent as believing a particular proposition (say, the proposition that it is

raining), the mindreader needs to represent something of the following form:

Agent BELIEVES “It is raining.”

where “it is raining” signifies a decoupled primary representation. This is exactly the same

decoupled representation that would be exploited when the infant pretends that it is

raining.

If this is right, then the foundations for the mindreading system are laid during the

second year of infancy, when infants acquire the basic machinery of decoupling and

metarepresentation. It is a long journey from acquiring this basic machinery to being able

to mindread in the full sense. Mindreading is a very sophisticated ability that continues to

develop throughout the first years of life. Many of the operations that are exploited in older

children’s and adults’mindreading systems are much harder to acquire than the PRETEND

operation. This is what we’ll look at now.

13.2 Metarepresentation, Autism, and Theory of Mind

In developing his model Leslie placed considerable weight on studies of children with

autism. Autism is a developmental disorder that has been increasingly discussed and

studied in recent years. Autism typically emerges in toddlers and the symptoms are often

detectable before the age of 2. The disorder is strongly suspected to be genetic in origin,

although its genetic basis is not very well understood.

For psychologists and cognitive scientists, autism is a very interesting disorder because it

typically involves deficits in social understanding, social coordination, and communica-

tion. But these social and communicative problems are not typically accompanied by

general cognitive impairments. Autistic subjects can have very high IQs, for example. Their

problems seem to be relatively circumscribed, although autistics often have sensory and

motor problems, in addition to difficulties with language.
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One feature of autism that particularly sparked Leslie’s attention is that autistic children

have well-documented problems with pretend play. This has been revealed by many

studies showing that pretend play in autistic children is very impoverished, in comparison

both with much younger normal children and with mentally retarded children of the same

age. In fact, the phenomenon is so widespread in autism that it has become a standard

diagnostic tool. Parents are often first alerted to autism in their children by their apparent

inability to engage in pretense and make-believe – and by the child’s inability to under-

stand what other people are up to when they try to incorporate the child into pretend play.

And one of the first questions that clinicians ask when parents suspect that their child has

autism is whether the child engages in pretend play.

This well-documented fact about autistic children is particularly interesting in the

context of the other problems that autistic children have. These problems cluster around

the very set of abilities in social understanding and social coordination that we are

collectively terming mindreading. In 1985 Leslie was one of the authors of a very influen-

tial paper arguing that autistic children had a very specific mindreading deficit – the other

two authors were Simon Baron-Cohen and Uta Frith.

Using the False Belief Task to Study Mindreading

Baron-Cohen, Leslie, and Frith studied three populations of children. The first group were

autistic, aged between 6 and 16 (with a mean of 11;11 – i.e., 11 years and 11 months). The

second group of children suffered from Down syndrome, which is a chromosomal disorder

usually accompanied by mental disability, often severe. The Down syndrome children

varied from 7 to 17 years old (with a mean of 10). The third group (the control group)

were children with no cognitive or social disorders, aged from 3;5 to 6, with a mean of 4;5.

It is very interesting to look at the overall cognitive ability of the three different

populations, as measured on standard tests of verbal and nonverbal mental age, such as

the British Picture Vocabulary test (which measures the ability to match words to line

drawings) and the Leiter International Performance Scale (which measures nonverbal

abilities such as memory and visualization).

The normal children scored lowest on the nonverbal measures. The normal children’s

mean nonverbal mental age of 4;5 compared to a mean nonverbal mental age of 5;1 for the

Down syndrome group and 9;3 for the autistic group. The Down syndrome group had the

lowest verbal mental age (with a mean of 2;11). The verbal skills of the autistic group were

significantly ahead of the normal children (with a mean verbal mental age of 5;5). These

numbers are all depicted in Table 13.1.

Baron-Cohen, Leslie, and Frith tested the mindreading abilities of the three groups by

using a very famous experimental paradigm known as the false belief test. The false belief

test was first developed by the developmental psychologists Heinz Wimmer and Joseph

Perner in an article published in 1983.

There are many different versions of the false belief test, but they all explore whether

young children understand that someone might have mistaken beliefs about the world.
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There is a very basic contrast between belief, on the one hand, and knowledge, say, on the

other. Consider knowledge. There is no way in which I can know that some state of affairs

holds without that state of affairs actually holding. Knowledge is an example of what

philosophers sometimes call factive states.

Exercise 13.2 Can you give examples of other mental states that are factive in this sense?

In contrast, beliefs are not factive. I cannot have false knowledge, but I can (all too

easily) have false beliefs. And anyone who understands what belief is needs to understand

that it is possible to have false beliefs.

So, if a young child does not understand the possibility that someone might have false

beliefs about the world, then there seems to be no sense in which they understand what is

involved in believing something. They cannot possess the concept of belief. And this, in

turn, tells us something about their mindreading skills. Children who do not understand

the concept of belief are lacking a fundamental component of the mindreading tool kit.

But how do we test whether children understand the possibility of false belief? This is

where the false belief test comes into the picture.

The experimental setup used by Baron-Cohen, Leslie, and Frith is a variant of Wimmer

and Perner’s original false belief test. It is depicted in Figure 13.4. The child being tested is

seated in front of an experimenter, who has two puppets, Sally and Anne. Between the

child and the experimenter is a table with a basket and box. In front of the child, Sally

places a marble in the basket and then leaves the room. While she is away Anne transfers

the marble from the basket to the box. Sally then returns. The experimenter asks the child:

“Where will Sally look for her marble?” (or, in some versions of the test, “Where does Sally

think the marble is?”).

The point of the experiment is that, although the child saw the marble being moved,

Sally did not. So, if the child has a clear grip on the concept of belief and understands that it

is possible to have false beliefs, then she will answer that Sally will look in the basket, since

nothing has happened that will change Sally’s belief that the marble is in the basket. If, on

the other hand, the child fails to understand the possibility of false belief, then she will

answer that Sally will look for the marble where it in fact is, namely, in the box.

TABLE 13.1 The three groups studied in Baron-Cohen, Leslie, and Frith (1985)

POPULATION

MEAN VERBAL

MENTAL AGE

MEAN NONVERBAL

MENTAL AGE

Normal group 4;5 4;5

Down syndrome group 2;11 5;1

Autistic group 5;5 9;3
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Exercise 13.3 Explain in your own words the logic behind the false belief task. Do you think it

succeeds in testing a young child’s understanding of false belief?

Interpreting the Results

The results of the experiment were very striking. The main question that the experimenters

askedwas the obvious one,which they called the BeliefQuestion:“Wherewill Sally look for her

marble?”But they alsowanted tomake sure that all the childrenunderstoodwhatwas goingon.

So they checked that each child knew which doll was which and asked two further questions:

“Where was the marble in the beginning?” (the Memory Question)

“Where is the marble really?” (the Reality Question)

(a) Sally places her marble in basket. (b) Exit Sally.

(c) Anne transfers Sally’s marble to box. (d) Re-enter Sally. The experimenter asks:
Where will Sally look for the marble? 

Sally Anne

Basket

Marble
Box

Figure 13.4 The task used by Baron-Cohen, Leslie, and Frith to test for children’s understanding

of false belief. (Adapted from Baron-Cohen, Leslie, and Frith 1985)
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Exercise 13.4 Explain in your own words the purpose of asking these two extra questions.

Baron-Cohen, Leslie, and Frith found that all the children understood the experimental

scenario. None of them failed either the Memory Question or the Reality Question. But

there was a very significant difference in how the three groups fared with the Belief

Question. Both the Down syndrome group and the normal group were overwhelmingly

successful – with correct answers from 86 percent and 85 percent, respectively. This is

despite the fact that the Down syndrome group had a mean verbal mental age of less

than 3. In very striking contrast, the autistic group (with a mean verbal mental age of 5;5)

performed extremely poorly. In fact, 80 percent of the autistic children failed the Belief

Question, despite a relatively high level of general intelligence.

The experimenters concluded that autistic children have a highly specific mindreading

deficit. As they put it in the original paper, “Our results strongly support the hypothesis

that autistic children as a group fail to employ a theory of mind. We wish to explain this

failure as an inability to represent mental states. As a result of this the autistic subjects are

unable to impute beliefs to others and are thus at a grave disadvantage when having to

predict the behavior of other people” (Baron-Cohen et al. 1985: 43).

Notice the specific diagnosis of why the autistic children fail the false belief task. It is

described as a failure in the ability to represent mental states – in metarepresentation. This

connection with Leslie’s theory of pretend play is illustrated in Figure 13.5.

Leslie’s theory allows us to connect two things that seem on the face of it to be

completely unconnected. The first is the fact that autistic children have severe problems

with pretend play. The second is that autistic children have serious difficulties with the

false belief task – and so, many have concluded, with mindreading more generally. These

two things turn out to be very closely connected if we think that both pretend play and

mindreading critically depend upon metarepresentation. Autistic children’s difficulties

with pretend play and with mindreading turn out to have a common cause and a common

explanation, namely, a deficit in metarepresentation.

This way of thinking about what is going wrong in the social development of the autistic

child goes hand in hand with a model of how social development progresses for the normal

child. On Leslie’s model, as reinforced by the experimental studies we have been examin-

ing, pretend play has a crucial role to play in the emergence of metarepresentation. In

autistic children, for reasons that are not yet understood, the process of developing

metarepresentational abilities never really gets going.

Here is the basic picture. Pretend play rests upon a basic portfolio of metarepresenta-

tional abilities. These metarepresentational abilities permit primary representations to be

decoupled from their usual functions. Once decoupled they can serve as inputs to the

PRETEND operation. The same basic machinery is supposed to be exploited in mindreading

more generally.

When young children (or adults, for that matter) successfully pass the false belief task,

they are (according to the model) starting with their memory of the ball being placed in the

basket. The metarepresentational mechanisms allow this primary representation to be
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decoupled from its usual role (so that, for example, it is not invalidated by watching Anne

transfer the marble from the basket to the box). This allows the child to form a representa-

tion along these lines:

Sally BELIEVES “The marble is in the basket.”

There is still a very important gap in the account, however. The problem is chronological.

Pretend play emerges during the second year of life. But children do not typically pass the

false belief test until they are nearly 4. There is a very clear sense, therefore, in which the

BELIEVES operation must be much harder to acquire than the PRETENDS operation. But

why is this? And what is the developmental progression that takes the normal child from

pretend play to successful mindreading, as evidenced by success on the false belief task?We

will come back to these questions later. First, though, we need to consider some important

experiments suggesting that children may be able to understand false beliefs significantly

earlier than suggested by the standard false belief task.

Reality

Child’s
representation of 
reality

Child’s
metarepresentation

False beliefPretense

It’s a banana

I’ll pretend ‘this banana 
is a telephone’

Anne has re-hidden the 
marble while Sally was 

out of the room

Sally thinks “the marble 
is in the basket”

Figure 13.5 Illustration of the connection between pretend play and success on the false

belief task.
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Implicit and Explicit Understanding of False Belief

The false belief task originally proposed by Baron-Cohen, Leslie, and Frith is a verbal task.

Children are explicitly asked about where they think Sally will look, or where they think

the marble is. But it may be that these explicit questions introduce additional computa-

tional demands that muddy the waters. Perhaps young children fail the false belief task

because they cannot cope with these extra computational demands, rather than because

they do not understand false belief?

One way of exploring this possibility would be to develop a less demanding false belief

test. This was done by Kristine Onishi and Renée Baillargeon in a famous set of experiments

first published in 2005. Instead of explicitly asking children about how the characters they

were observing would behave, or what they believed, Onishi and Baillargeon used a

violation of expectations paradigm that measured looking times. (Rather like the experi-

ments on infant folk physics discussed in Chapter 11.)

In their experimental setup, 15-month-old infants were familiarized to an actor search-

ing for a toy in one of two boxes (yellow and green, respectively). They were then presented

with different conditions. In one condition the toy was moved from one box to the other

with the actor clearly watching. In a second condition the toy was moved in the absence of

the actor. After the toy was moved the actor then looked for the toy in one of the two

baskets.

Onishi and Baillargeon hypothesized that the length of time that the infants looked at

each of the scenarios would be a guide to their implicit understanding of false belief.

Consider the second scenario, where the toy is moved without the actor seeing. Suppose

that the toy was moved from the green box to the yellow box without the actor observing.

Then the actor would presumably have a false belief about the toy’s location, thinking it to

still be in the green box when it is really in the yellow box. If infants understand this then

they will presumably expect the actor to search in the green box. This expectation will be

violated if the actor searches in the yellow box.

The experiments revealed a robust effect. Infants looked significantly longer when the

actor searched in the yellow box than when the actor searched in the green box, even

though the toy was really in the green box. Onishi and Baillargeon claim that the infants

were surprised that the actor did not act on the basis of his (false) belief that the toy was still

in the green box. So, they conclude, infants have an understanding of false belief much

earlier than suggested by the traditional false belief task.

The Onishi and Baillargeon results have been replicated and expanded by other

researchers. At the same time, however, there has been considerable debate about how to

interpret them. Some cognitive scientists, including Onishi and Baillargeon themselves,

think that the results show that young infants have a full understanding of false belief,

directly refuting the standard claim that children do not arrive at a full understanding of

false belief until around 4 years of age. Others take a more measured approach. This is what

we shall do here.
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The original, verbal false belief experiments seem to be testing for a cognitive ability

considerably more sophisticated than could be revealed by the Onishi and Baillargeon

experiments. The earlier experiments are directly targeting explicit conceptual abilities

manifested in verbal responses and explicit reflection. Children are asked about what

agents will do and what they believe. What the experiments are getting at is mastery of

the concept of belief, together with the complicated vocabulary and other baggage that

goes with it.

In contrast, the Onishi and Baillargeon experiments are probing the nonverbal expect-

ations that young children have about behavior and how behavior is affected by what an

agent has and has not observed. It is clear that these are related in at least one important

sense. Nobody who lacked the nonverbal expectations identified in the Onishi and Bail-

largeon experiments could possibly pass the much more sophisticated false belief test. At

the same time, though, the dependence doesn’t seem to hold in the opposite direction. It

seems perfectly possible to have the right nonverbal expectations without being able to

articulate them in the right sort of way to pass the false belief test. In fact, all the experi-

mental evidence seems to suggest that this is what happens to most children between 1.5

and 4 years of age.

Perhaps the best way to look at the situation is this. The Onishi and Baillargeon experi-

ments identify an implicit understanding of false belief, whereas the standard false belief

tasks are testing for an explicit understanding of false belief. By an explicit understanding

I mean one that is verbally articulated and reflective, developed as part of high-level

explanations of behavior in terms of beliefs and other mental states. An implicit under-

standing, in contrast, is predominantly practical, focused primarily on aligning one’s

behavior with that of others and correctly predicting how others will behave as a function

of what they have or have not seen.

Exercise 13.5 Explain in your own words the difference between implicit and explicit

understandings of false belief.

In the remainder of this chapter we will be focusing primarily on what it takes for a child

to understand false belief explicitly. As we have already seen, there is evidence from (for

example) pretend play suggesting that young children are capable of forms of metarepre-

sentation considerably before they have an explicit understanding of false belief. The

Onishi and Baillargeon experiments add an additional data point by showing that young

children can have an implicit understanding of false belief more than 2 years earlier. This

raises the very interesting question of how an implicit understanding of false belief fits into

the overall development of what cognitive scientists call the mindreading system.

13.3 The Mindreading System

We have explored some of the connections between mindreading and pretend play. The

principal link between them, according to the model first proposed by Alan Leslie and
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developed by many others, is that both exploit metarepresentational skills. The model is

built around the idea that mindreading and pretend play have a common information-

processing structure. Both involve a “decoupling” of representations from their usual

functions. In pretend play these decoupled representations serve as inputs to the PRETEND

operation. In mindreading the theory of mind system uses these decoupled representations

to make sense of what is going on in other people’s minds.

However, as we saw when we looked at the false belief task, some of the more complex

types of mindreading emerge much later in cognitive development than pretend play,

even though they both involve a sophisticated type of information processing that

involves representing representations. Young children start to engage in pretend play

well before they are 2 years old, but it is not until the age of around 4 that they have a

rich enough understanding of belief to pass the false belief task. So, what happens in

between?

First Steps in Mindreading

The developmental psychologist Simon Baron-Cohen was one of the co-authors of the

1985 paper that we looked at in the last section – the paper that first drew the connection

between autism and problems in mindreading. Since then he has developed and fine-

tuned a model of how mindreading emerges in infants and young children.

The theory of mindmechanism (TOMM) identified by Alan Leslie is the end point of the

development of mindreading. But there are several stepping-stones on the way. Each of

these stepping-stones opens up a different type of mindreading to the young infant. For

Baron-Cohen, mindreading is a highly complex suite of abilities. It emerges in stages, with

each stage building on its predecessors. The basic components of the latest version of the

model are illustrated in Figure 13.6.

According to Baron-Cohen’s model, the foundations of mindreading emerge in the

earliest months of infant development. The most basic mindreading skills are all in place

by the time a normal infant is 9 months old. These basic mindreading skills are all

essentially perceptual in nature. They involve the infant becoming perceptually sensitive

to behavioral manifestations of psychological states.

The intentionality detector (ID) allows the infant to identify purposeful movements.

When an agent makes a self-propelled movement, ID codes the movement as being goal-

driven – it allows the infant to identify her mother’s arm movement as a reaching, for

example. At a more fundamental level, ID allows the infant to distinguish the animate,

goal-driven entities from the other objects it encounters.

A good way of finding out the apparent goal of a purposeful movement is to check

where the agent is looking – since agents tend to keep their eyes on the target. So, one of

the most fundamental tools for making sense of the social world is the ability to track

other people’s eye movements. This is the function of the eye direction detector (EDD).

Whereas ID enables the infant to detect purposeful movements, the job of EDD is to help

the infant identify the goals of the movement. The two mechanisms are highly
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complementary. There is little point in knowing that a movement is purposeful unless

one has some idea what the goal is.

But there is more to making sense of people’s movements than identifying purposeful

movements and their goals. Young infants beginning to negotiate the social world need to

be sensitive to the motivations and moods of the people with whom they are interacting –

complete strangers, as well as their caregivers and other family members. This is the job of

the emotion detector (TED). The emotion detector allows infants to understand not just that

agents make movements toward particular goals, but also why those movements are being

made and what sort of movements they are. Are they playful movements, for example, or

protective ones? Sensitivity to moods and emotions is a first step toward understanding the

complexities of psychology.

According to Baron-Cohen, the three basic components of the mindreading system are all

in place by the time the infant is 9 months old. Well before the end of theirfirst year, human

infants can distinguish animate objects from inanimate ones. They can track where other

people are looking and pick up on their moods. All of these skills are primarily perceptual.

The infant is learning to pick up clues about people’s psychology from what she can perceive

of their physical characteristics and movements. Moods are revealed in facial expressions,

and in tone of voice. Animate beings move in very different ways from inanimate objects –

their movements are much less regular and much harder to predict, for example. The

Intentionality 
detector (ID) 

The emotion 
detector (TED)

Eye direction 
detector (ED) 

Shared attention 
mechanism (SAM)

The empathy
system (TESS)

Theory of mind 
mechanism (TOMM)

0–9 months

9–14 months

14 months 18–48 months

Figure 13.6 Baron-Cohen’s model of the mindreading system.
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orientation of the head is a good clue to eye gaze. In all these cases the infant is decoding the

perceived environment in terms of some very basic psychological categories.

These three basic systems (ID, TED, and EDD) all involve relatively simple types of

representation. They all involve representing other agents as having certain fairly basic

features. TED, for example, involves “tagging” other agents with primitive representations

of their moods (happy, sad, angry, frightened). EDD involves identifying a dyadic relation

between an agent and an object (Dad sees the cup, for example). Dyadic relations have two

parts. The dyadic relation of seeing is a relation between an agent and an object. ID also

produces representations of dyadic relations between agents and objects. The dyadic

relations here all involve intentional movements, such as reaching, or following, or

pushing.

From Dyadic to Triadic Interactions:
Joint Visual Attention

Between the ages of 9 and 14 months a very important transformation takes place in the

young infant’s mindreading skills. In the first 9 months of life infants are capable of

understanding people and interacting with them in certain very basic ways. They are

also capable of understanding objects and manipulating them. But for the very young

infant these are two separate activities. Starting at the age of 9 months the infant learns

to combine them. Infants become capable of employing their interactions with people

in their interactions with objects, and vice versa. This is illustrated in joint visual

attention.

Joint visual attention occurs when infants look at objects (and take pleasure in looking

at objects) because they see that another person is looking at that object – and because they

see that the other person sees that they are looking at the object. Joint visual attention is a

collaborative activity. The infant does not just represent a dyadic relation between her

mother and a cup, for example. The infant learns to represent different triadic (or three-

way) relations between herself, the mother, and the cup – as well as to initiate them with

pointing and other gestures.

In joint visual attention the infant exploits representations such as the following:

Mother SEES (I SEE the cup)

I SEE (Mother SEES the cup)

Joint visual attention becomes possible when the infant is able to embed representations –

that is, to represent that an agent (whether herself, or someone else) is representing

someone else’s representation. This is very different from the type of information process-

ing involved in detecting eye direction or sensitivity to moods. It makes possible a whole

range of coordinated social behaviors in which infants and their caregivers take enormous

pleasure in collaborative games – games that involve and exploit an awareness of what

others are doing and how they too are participating in the game.
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This distinctive kind of information processing is carried out in what Baron-Cohen has

termed the shared attention mechanism (SAM). The emergence of the shared attention

mechanism is a crucial stage in the development of the young child’s mindreading skills.

The connections with autism are very suggestive here too. We saw in the last section that

autistic children have well-documented problems both with advanced mindreading (of the

sort required for successful performance on the false belief task) and with pretend play. It

turns out that autistic children also have difficulties with joint attention – and that there is

a strong correlation between the severity of their social impairments and their inability to

engage in joint attention.

The shared attention mechanism is also very important for language development.

Pointing to objects is a very important way of teaching children what words mean. But in

order for children to pick up on the cues that they are being given they need to be able to

understand that they and the person pointing are jointly attending to the very same

thing. Without this, children cannot understand the instructions that they are

being given.

TESS and TOMM

In Baron-Cohen’s model, SAM is a crucial foundation for the final two components of the

mindreading system. We have already encountered one of these components – the theory

of mind mechanism (TOMM). Earlier versions of Baron-Cohen’s model contained only

TOMM after SAM. Recently, however, he has added an additional component, which he

calls TESS (for the empathizing system). For normal social development it is not enough

simply to be able to identify other people’s emotional states and moods. The developing

child needs to learn to respond appropriately to those emotional states and moods. This is

where empathy comes in.

Psychosocial disorders such as psychopathy suggest that TOMM and TESS can come

apart (and hence that there are two distinct and separable mechanisms carrying out the

different tasks of identifying other people’s mental states and developing affective

responses to those mental states). Psychopaths have profound social problems, but these

problems are very different from those suffered by autistic people. Psychopaths are typic-

ally very good at working out what is going on in other people’s heads. The problem is that

they tend not to care about what they find there – and in fact they use their understanding

to manipulate other people in ways that a normal person would find unacceptable.

Diagnosing psychopathy is a very complex business, but psychiatrists typically put a lot

of weight on basic failures of empathy – on failure to feel sympathy when someone else is

in pain or obvious distress, for example.

TESS can only emerge if the basic capacity for shared attention is in place. In many

ways empathy is a matter of being able to put oneself in someone else’s position – to

imagine what it would be like to be someone else, and to find oneself in the situation

that they find themselves in. Shared attention basically exploits the same ability, it is

352 Exploring Mindreading



just being applied in a much more limited sphere. The child engaged in joint visual

attention or collaborative play is able to adopt someone else’s visual perspective, to

represent how things look to someone else. As they do this more and more they

eventually bootstrap themselves into the ability to understand someone else ’s emo-

tional perspective on the world – to understand not just how a situation looks to

someone, but how that situation affects them.

The possibility of psychopathy shows (according to Baron-Cohen) that TESS and

TOMM are distinct, although they both emerge from a common foundation in SAM.

They develop more or less in parallel, with TESS emerging a little earlier, but TOMM

taking much longer to emerge completely. The first stages in the development of TOMM

are taken as early as 18 months, which is when typical young children start to engage in

pretend play. But full-fledged TOMM does not emerge until much later in development –

at around the age of 4, which is when young children tend on average to pass the false

belief test.

Summary

This chapter has explored the idea that there is a dedicated system for mindreading – for

understanding other minds and navigating the social world. The chapter began by reviewing

Leslie’s theory that mindreading exploits a set of basic abilities that are also deployed in pretend

play. These are abilities for metarepresentation – for representing representations. We looked at a

famous set of experiments using the false belief task that seemed to show that autistic children

(who are known to be deficient in pretend play) are also impaired in tasks involving reasoning

about other people’s beliefs. Mindreading is a complex phenomenon and we looked at a model of

mindreading that sees it as made up of six distinct components, emerging at different stages in

cognitive development.

Checklist

Alan Leslie’s model of mindreading in young children is based on an analogy with the

information processing involved in pretend play.

(1) The emergence of pretend play in the second year of life is a major milestone in cognitive and

social development.

(2) In pretend play some of an infant’s primary representations of the world and other people become

“decoupled” from their usual functions while preserving their ordinary meaning.

(3) Leslie thinks that primary representations function in the same way in pretend play as in

mindreading. Both pretend play and mindreading exploit metarepresentation.

(4) Children with autism have significant problems both with mindreading and with pretend play.
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(5) The false belief task (developed by Heinz Wimmer and Joseph Perner) is a standard test of

mindreading abilities in children. It tests whether children are able to abstract away from their own

knowledge to understand that someone else can have different (and mistaken) beliefs about

the world.

High-level mindreading involves attributing propositional attitudes (such as beliefs

and desires) to other people. But high-level mindreading depends upon a complex

system of lower-level mechanisms – as in Simon Baron-Cohen’s model of the

overall mindreading system.

(1) The intentionality detector is responsible for perceptual sensitivity to purposeful movements.

(2) The eye direction detector makes it easier to identify the goals of purposeful movements and to

see where other people’s attention is focused.

(3) The emotion detector gives a basic sensitivity to emotions and moods, as revealed in facial

expressions, tone of voice, etc.

(4) The shared attention mechanism makes possible a range of coordinated social behaviors and

collaborative activities.

(5) The empathizing system is responsible for affective responses to other people’s moods and

emotions (as opposed to simply identifying them).

Further Reading

Leslie first presented his metarepresentational theory of pretend play and mindreading in Leslie

1987. The theory has been considerably modified and developed since then. See Leslie and

Polizzi 1998, Leslie, Friedman, and German 2004, and Leslie, German, and Polizzi 2005 for

updates. For more recent research on pretend play from Leslie’s group, see Friedman and Leslie

2007 and Freiedman et al. 2010. For a general review of research on pretend play, see Weisberg

2015.

The false belief task discussed in the text was first presented in Wimmer and Perner 1983. It has

been much discussed (and criticized). For powerful criticisms of its claimed relevance to theory of

mind, see Bloom and German 2000. Perner’s own theory of mindreading is presented in his book

Understanding the Representational Mind (1993). The claim that young infants can pass a version

of the false belief task was made in Onishi and Baillargeon 2005. For discussion, see Perner and

Ruffman 2005, Rakoczy 2012, and Heyes 2014. Poulin-Dubois, Brooker, and Chow 2009 reviews

studies on infant mindreading abilities.

Numerous recent reviews discuss both implicit and explicit false belief understanding

(Baillargeon, Scott, and He 2010; Beate 2011; Low and Perner 2012; Luo and Baillargeon 2010;

Perner and Roessler 2012; Trauble, Marinovic, and Pauen 2010). For a philosophical perspective on

this research, see Carruthers 2013.

The idea that autism is essentially a disorder of mindreading was first presented in Baron-

Cohen, Leslie, and Frith 1985. For a book-length discussion of autism as “mindblindness,” see

Baron-Cohen 1995. This interpretation of autism has been challenged – see, for example, Boucher

354 Exploring Mindreading



1996. The papers in Baron-Cohen, Tager-Flusberg, and Cohen 2000 discuss autism from the

perspective of developmental psychology and cognitive neuroscience. For a survey, see Baron-

Cohen 2009. Fletcher-Watson et al. 2014 reviews studies of clinical interventions based on the

mindreading theory of autism. Roeyers and Denurie 2010 and Mathersul, McDonald, and Rushby

2013 discuss alternatives to the false belief task usable in adolescents and adults.
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Overview

Mindreading is the ability to understand other people’s mental states. It is key to human social

interaction. Chapter 13 introduced some prominent themes in the cognitive science of

mindreading. We looked at Alan Leslie’s influential idea that the roots of mindreading in early

childhood lie in pretend play and other activities that involve metarepresentation (the ability to

think about thinking, as opposed to just being able to think about objects in the world). We saw

how this way of thinking about mindreading is supported by the best-known test of mindreading

abilities – the false belief task, which tests for understanding of the basic fact that people can have

mistaken beliefs about the world. And then we looked at Simon Baron-Cohen’s longitudinal model

of mindreading, which traces how understanding of belief and other complex psychological states

emerges from such more primitive abilities, such as eye gaze tracking and emotion detection.

In this chapter we continue investigating mindreading. We will tackle some more advanced

topics, starting in Section 14.1 with a problem that we encountered in the last chapter. Why does it

take so long for children to pass the false belief task, if (as Leslie and other believe) they are
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capable of metarepresentation much earlier? We look at two different explanations – one from

Leslie and one from Josef Perner (who originally developed the false belief task).

In Section 14.2 we turn to a very different way of thinking about mindreading. According to the

simulation theory, mindreading is not really metarepresentational at all. It doesn’t require

dedicated information-processing systems for identifying and reasoning about other people’s

mental states. Instead, we make sense of their behavior by running our “ordinary” information-

processing systems offline in order to simulate how other people will solve a particular problem, or

react to a particular situation.

Finally, in Section 14.3 we turn to cognitive neuroscience, exploring how the techniques and

technologies discussed in Chapter 9 have been used to study mindreading. In addition to studying

the neural basis of mindreading (the areas in the brain that are most involved when subjects

perform mindreading tasks), neuroscientists have discovered experimental evidence consistent

with the simulation theory discussed in Section 14.2.

14.1 Why Does It Take Children So Long to Learn to
Understand False Belief?

Look back at Figure 13.6 in the previous chapter. This traces the emergence of the theory of

mind module (TOMM). The process is long and drawn out. It begins at around 14 months

(when the infant starts to engage in pretend play) and is not complete until the child is

around 4 years old (when the young child acquires the understanding of complex mental

states tested in the false belief task). But why does this process take so long?

If Leslie’s analysis (see Section 13.2) is correct, then information processing in the

TOMM essentially exploits the machinery of metarepresentation and “decoupled” primary

representations. The same machinery is involved both in pretend play and in the attribu-

tion of beliefs. So why are infants able to engage in pretend play so much earlier than they

are capable of understanding beliefs and passing the false belief task?

Leslie’s Answer: The Selection Processor Hypothesis

According to Leslie and his collaborators, there is a long time lag between when the

capacity for metarepresentation first emerges (during the second year) and when children

generally pass the false belief test (toward the end of the fourth year), because there are

actually two very different abilities here. The first is the ability to attribute true beliefs to

someone else. The second is the ability to attribute false beliefs. These two abilities emerge

at very different times in development. On Leslie’s model, young children are able to

attribute true beliefs from a relatively early age. But they are only able to attribute true

beliefs. They can only succeed on the false belief task when they learn to “switch off,” or

inhibit, the default setting that other people’s beliefs are true.

Leslie presents this in terms of a mechanism that he calls the selection processor. The

selection processor is set up to favor true beliefs. So, the selection processor’s default setting

favors the true belief candidate. In the false belief task, this is the belief that Sally believes that

the marble is in the box. But in this case, there is evidence to the contrary. The child knows
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that Sally did not see the marble being moved from the basket to the box. But for this

countervailing evidence to be effective, the selection processor’s default setting needs to be

overridden. This is what separates children who pass the false belief task from children who

fail. The ones who pass are able to inhibit the bias in favor of the true belief candidate.

So, for Leslie, the problem is not with TOMM itself. TOMM is in place from the pretend

play stage. It is just that it initially only works to attribute true beliefs. Success on the false

belief task comes only when the young child acquires a more general capacity for executive

control. Is there any way of testing this general hypothesis?

One way to test this hypothesis would be to alter the false belief task to make greater

demands on mechanisms of inhibition and control. If the task makes greater demands on

inhibitory control, and inhibitory control is the factor that explains success rather than

failure on the false belief task, then one would expect that success rates on the altered task

would be lower than on the original task.

Exercise 14.1 Explain and assess this reasoning in your own words. Can you think of other ways

to test the hypothesis?

A study published by Leslie and Pamela Polizzi in 1998 reported a number of experi-

ments adopting this general strategy. Here is a representative example. Children are

presented with a scenario in which a girl (let’s call her Sally, for continuity) is asked to

place food in one of two boxes. The twist to the tale is that one of the boxes contains a sick

kitten. Because eating the food might make the kitten worse, Sally wants to avoid putting

the food into the box with the kitten in it. So, Sally has what Leslie, German, and Polizzi

term an avoidance-desire. The point is that avoidance-desires are inhibitory. An avoidance-

desire is a desire not to do something.

There were two conditions:

In the true belief condition, the kitten is moved from Box A to Box B in front of Sally.

In the false belief condition, the kitten is moved without Sally seeing.

Children in each condition are asked to predict which box Sally will put the food in. There

is no question here about whether the children understand false belief. All the children

were able to pass the standard false belief task and all of them answered correctly when

they were asked where Sally thought the kitten was.

In the true belief condition, the child knows that the kitten is in Box B (since she saw the

kitten being moved there) and she knows that Sally wants to avoid putting the kitten and

the food in the same box. So, she needs to predict that Sally will put the food in Box A. But

for that she needs to be able to make sense of Sally’s inhibition of what most people would

normally want to do – which is to give food to a kitten. It turned out that a very high

percentage (well over 90 percent) of the children in the experiment were able successfully

to predict where Sally would put the food in the true belief condition.

Now consider the false belief condition. The child still knows that the kitten is in

Box B and she still knows that Sally wants to make sure that the kitten does not get the

food. But now she also needs to take on board the fact that Sally did not see the kitten being
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moved from Box A to Box B. So, as on the standard false belief task, she needs to inhibit her

own knowledge of where the kitten is. Now the children are being asked to do two things at

once – to inhibit their own knowledge of where the kitten is, as well as to make sense of

Sally’s inhibition of the normal desire to give food to a kitten. There is a double inhibition

required.

According to Leslie, German, and Polizzi this is why the success rate in the false belief

condition is so much lower than in the true belief condition. It turned out that only

14 percent of children in the study succeeded in the false belief condition (as opposed to

94 percent in the true belief condition). Their hypothesis is that the double inhibition

places much higher demands on the selection processor than the ordinary false belief tasks.

Exercise 14.2 Explain the reasoning behind this experiment in your own words and assess it.

Exercise 14.3 Is the selection processor hypothesis compatible with the Onishi and Baillargeon

data suggesting an implicit understanding of false belief in 15-month-old infants? If so, how? If

not, why not?

An Alternative Model of Theory of Mind Development

Here is an alternative way of thinking about the problem, due to the developmental

psychologist Joseph Perner (one of the two authors of the original paper that presented

the false belief task).

Perner’s thinking is very much informed by influential theories in philosophy about the

nature of belief, and other mental states that philosophers collectively label propositional

attitudes. Belief is called a propositional attitude because it involves a thinker taking an

attitude (the attitude of belief ) toward a proposition. So, if I believe that it is now raining,

then I am taking the attitude of belief to the proposition it is now raining.

What are propositions? We can simply think of propositions as representations of the

world that can be either true or false. This means that if a young child (or anyone else, for

that matter) is to attribute a belief to someone else, she must represent that person as

standing in the belief relation to a representation of the world that can be either true or false.

Understanding propositions in this way, Perner rejects Leslie’s claim that there could be

a theory of mind mechanism that only attributes true beliefs. Leslie may well be right that

young children are attributing to others some sort of psychological state that is always true

(from the child’s perspective). But, according to Perner, that psychological state cannot be

the state of belief. Beliefs are just not the sort of thing that can always be true.

Exercise 14.4 State in your own words and assess Perner’s objection to Leslie’s model of

the TOMM.

In fact, Perner draws a stronger conclusion. If the psychological states that the child

attributes are always true (from the child’s perspective), then the child is not really engaged

in metarepresentation at all. The child is certainly representing another person as being in
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a psychological state. But they can do that without engaging in metarepresentation. Since

the content of the psychological state tracks what the child considers to be the state of the

world, the child does not need to deploy any resources over and above the resources that

she herself uses to make sense of the world directly.

Compare belief with perception. As we saw when we first encountered the false belief

task in Section 13.2, perception is factive. I can only perceive that things are a certain way if

they really are that way. I can only perceive that it is raining if it really is raining. The

factive nature of perception carries across to what happens when we represent someone

else as perceiving something. I cannot represent someone else as perceiving that it is

raining unless I think that it really is raining. But this does not hold for belief.

Figures 14.1 and 14.2 make it easier to see what is going on here. Figure 14.1 shows full-

blown metarepresentation. The structure of metarepresentation is triadic. A metarepresent-

ing subject has to represent another psychological subject, a psychological relation such as

belief, and the proposition that is believed. The proposition represents a particular state of

affairs in the world (the state of affairs of the marble being in the box, or of the cat being on

the mat). It can be either true or false. But, as far as the accuracy of metarepresentation is

concerned, what matters is not whether or not the proposition is true, but rather whether

or not the metarepresenting subject has identified it correctly.

In Figure 14.2, in contrast, we see what is going on when a psychological subject repre-

sents another psychological subject’s perceptual state. Here there is no need for a propos-

ition to be identified. There is no need for metarepresentation in the strict sense. All that the

person representing the psychological state needs to do is to represent directly a relation

between the perceiver and the state of affairs in the world that the perceiver is perceiving.

Metarepresenter

Agent Proposition

State of affairs

Represents Metarepresents

Believes

Represents

Represents

Figure 14.1 What goes on when one subject represents another’s belief. Note that representing

belief requires metarepresentation.
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On Perner’s view of mindreading, therefore, metarepresentation in the full sense of the

word does not appear until fairly late in development. It is only when children start to

understand the possibility of false belief that we see the emergence of what Perner calls the

representational mind.

But now we have a new problem. If Perner is right, however, that metarepresentation

does not emerge until children pass the false belief test, then we need to find another way

of interpreting what is going on in pretend play.

Perner’s key idea here is that primary representations can be “decoupled” from reality

without there being metarepresentation going on. Thinkers can decouple primary repre-

sentations from reality without representing them as representations.

Counterfactual thinking is a good example. We engage in counterfactual thinking when

we think about how things might be (but are not). If I am wondering whether I have

made the right choice of restaurant I might start to think about how things might have

turned out had I made a different choice. I might imagine how things would be in a

different restaurant, for example – the different things that I could have ordered, the

different clientele, the lack of noise, and so on. The representations in counterfactual

thinking are decoupled in the sense that they are being used to think about how things

might be, rather than about how they are. But they do not involve metarepresentation.

When I think about the steak that I might now be having in the restaurant over the

street, my representation of the steak is decoupled from reality (because, after all, I am

not thinking about any existing steak). But I am not engaged in metarepresentation –

I am thinking about the steak that I could be having, not about my representation of

the steak.

Metarepresentation is a matter of thinking about decoupled representations (thinking

that is directly focused on representations, rather than on the world). But counterfactual

thinking is a matter of thinking with decoupled representations (using decoupled represen-

tations to think about the world). When the child pretends that the banana is a telephone,

she is decoupling her primary representations of the telephone and applying them to the

banana. But at no point is she representing those primary representations – and so she is

not engaged in metarepresentation.

Representer

Agent State of affairs

Represents Represents

Perceives

Represents

Figure 14.2 What goes on when one subject represents another’s perception. Note that

representing perception does not require metarepresentation.
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A cognitive scientist who adopts Perner’s interpretation of pretend play can nonetheless

adopt many of Leslie’s specific proposals about the information processing in pretend play.

She could also adopt the model of the complete mindreading system proposed by Simon

Baron-Cohen (although the emergence of the TOMM would have to be dated somewhat

later). Because of this, one might well think that there is much more agreement than

disagreement between Leslie and Perner. In fact, this turns out to be exactly right when we

look at a very different model of mindreading that some cognitive scientists and develop-

mental psychologists have proposed. This is the simulationist model that we will examine

in the next section. From the perspective of simulationists, Leslie and Perner are really both

thinking about mindreading in the same (mistaken) way.

Exercise 14.5 Go back to Section 13.1 and identify how Leslie’s basic model of pretend play

would need to be modified in order to accommodate Perner’s interpretation.

Exercise 14.6 Is Perner’s interpretation compatible with the Onishi and Baillargeon data suggesting

an implicit understanding of false belief in 15-month-old infants? If so, how? If not, why not?

14.2 Mindreading as Simulation

The last section focused primarily on the differences between the models of mindreading

developed by Alan Leslie and Joseph Perner. But still, they have a lot in common. They

both think that mindreading is basically a theoretical accomplishment. It requires bringing

a specialized body of knowledge (theory of mind) to bear in order to explain and predict the

behavior of others.

This section explores an alternative to this theory-based approach. According to the

simulation theory, there is no specialized theory of mind mechanism. Instead, theory of

mind processing is carried out by the very same systems that are responsible for ordinary

decision-making and for finding out about the world.

Here is the basic idea. Suppose that we have a reasonable sense of the beliefs and desires

that it would be appropriate to attribute to someone else in a particular situation. To find

out how they will behave, we don’t use specialized knowledge about how mental states

typically feed into behavior. Instead, we use our own decision-making processes to run a

simulation of what would happen if we ourselves had those beliefs and desires. We use the

output from that simulation process to predict how the person will behave.

Standard Simulationism

One way of developing this basic idea was originally proposed by the developmental psych-

ologist Paul Harris and subsequently developed by the philosopher Alvin Goldman. We can

call their theory standard simulationism. According to standard simulationism, the process of

simulation has to start with the mindreader explicitly (although not necessarily consciously)

forming judgments about how the other person represents the relevant situation and what
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they want to achieve in that situation. These judgments serve as the input to the ordinary

decision-making system. This general model is illustrated in Figure 14.3.

Where do these judgments come from? Here’s Goldman’s proposal. He thinks that we

work by analogy with our own beliefs and desires. We know which beliefs we tend to form

in response to particular situations. And so, we assume that others will form the same

beliefs, unless we have specific evidence to the contrary – e.g., about how they have acted

in the past, or about temperamental differences, or the different information that they

might have. When we do have such additional evidence, we make adjustments by thinking

about what we would do if we had those temperamental features or that extra information.

So, on Goldman’s model, knowledge of others rests upon self-knowledge. And he thinks

that we have a special mechanism for finding out about our own beliefs, desires, and other

propositional attitudes – a self-monitoring mechanism that philosophers call introspection

or inner sense.

Perceptual
processes

Interference
mechanisms

Body monitoring
system

Decision-making
(practical reasoning)

system

Behavior predicting
& explaining system

Pretend – belief and
desire generator

Action control
systems

Beliefs Desires

BEHAVIOR 

Figure 14.3 A schematic version of standard simulationism. Note that the ordinary decision-

making system is being run offline with pretend inputs. (Adapted from Nichols et al. 1996)
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Radical Simulationism

There is a second way of developing the basic simulationist idea – often called radical

simulationism. Radical simulationism has been developed primarily by the philosophers

Robert Gordon and Jane Heal. The intuitive idea behind radical simulationism is that,

instead of coming explicitly to the view that the person whose behavior I am trying to

predict has a certain belief (say, the belief that p), what I need to do is to imagine how the

world would appear from her point of view.

Here is the difference. In standard simulationism, the process of simulation starts with

beliefs about another person’s beliefs and desires. They are metarepresentations. According

to radical simulationism, on the other hand, what the simulator is thinking about is the

world, rather than the person they are simulating. The simulator is thinking about the

world from the perspective of the person being simulated, rather than thinking about their

beliefs, desires, and other psychological states.

Radical simulationism proposes mindreading without metarepresentation. This is because

it is world-directed, rather than mind-directed. And as a result, it gives a very different account

of what is going wrong when children fail the false belief test. For the radical simulationist,

children who fail the false belief test lack imaginative capacities. Their capacity to project

themselves imaginatively into someone else’s position is not sufficiently developed. They are

not yet able to form beliefs from a perspective other than their own. They are capable of imagina-

tive perceiving. That is, they can adopt someone else’s perceptual perspective on the world –

they can appreciatehow things look to Sally. But they arenot capable of imaginativelyworking

their way into the beliefs that someone might have about the world.

Exercise 14.7 We have now looked at four different ways of thinking about the false belief task.

Draw up a table indicating the four different proposals that have been made for explaining what it

is that the false belief task is testing for.

14.3 The Cognitive Neuroscience of Mindreading

This section explores what we can learn about mindreading from cognitive neuroscience.

The neuroscience of mindreading has become a very hot topic in recent years and we can

only scratch the surface here. But we can focus the issues by concentrating on three

questions that emerge from our earlier discussion.

Several of the models of mindreading that we have been looking at hold that the mind

contains a dedicated theory of mind mechanism (TOMM). This is the information-

processing system responsible for reasoning about other people’s beliefs, desires, and other

propositional attitudes. So, a natural question to ask is,

Question 1 Is there any evidence at the neural level for the existence of a TOMM?

We also looked at the alternative proposal that mindreading is an exercise in simulation.

It does not exploit systems specialized for mindreading. Instead, the information
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processing in mindreading is carried out by cognitive systems that also do other things. We

can call these co-opted systems. So, we can ask whether there is any evidence at the neural

level for this way of thinking about mindreading.

There are really two different questions here. We can make a distinction between low-

level mindreading and high-level mindreading. Low-level mindreading involves detecting

emotions, identifying goal-driven actions, sensitivity to eye gaze, and so on. High-level

mindreading involves identifying and reasoning about beliefs, desires, and other psycho-

logical states. This gives us two further questions:

Question 2 Is there evidence at the neural level that low-level mindreading is a process of

simulation involving co-opted systems?

Question 3 Is there evidence at the neural level that high-level mindreading is a process of

simulation involving co-opted systems?

Neuroimaging Evidence for a Dedicated
Theory of Mind System?

In Chapter 11 we saw that neuroimaging allows cognitive scientists to map activity in the

brain while subjects are performing specific tasks. So, to use neuroimaging to investigate

whether there is a dedicated TOMM, experimenters have looked for brain regions with

these two characteristics:

1 They show increased activity in response to information-processing tasks that require the

subject to attribute beliefs.

2 These increased activation levels are specific to tasks involving belief attribution – as

opposed, for example, to reflecting demands on general reasoning, or the fact that people

(rather than inanimate objects) are involved.

As far as (1) is concerned, it is very important that a candidate TOMM region should show

increased activation both for false belief tasks and for true belief tasks. What (2) is asking for

is evidence that the neural systems are engaged in domain-specific processing. In order to

establish that (2) holds, experimenters need to make sure that they have controlled for

domain-general processes (such as language or working memory).

Neuroimaging studies have identified a number of brain regions as showing increased

activation in tasks that seem to require reasoning about beliefs. Most of these studies have

involved versions of the false belief test, although some have explored different paradigms.

The cognitive psychologist Vinod Goel, for example, ran a series of studies in which he

asked subjects to decide whether Christopher Columbus would have been able to work out

the function of an object from a picture – the idea being that this task requires subjects to

reason about the sort of beliefs that a fifteenth-century explorer would have been likely to

have. Other studies had subjects read a short story and then answer questions on it. Some

of the questions required making inferences about the beliefs of characters in the story and

others not.

366 Mindreading: Advanced Topics



Studies such as these have identified a number of brain regions as potentially forming

part of a dedicated theory of mind system. These include (working more or less from front

to back):

■ medial prefrontal cortex

■ anterior cingulate cortex

■ orbitofrontal cortex

■ temporal pole

■ Broca’s area

■ anterior superior temporal sulcus

■ fusiform gyrus

■ temporoparietal junction

■ posterior superior temporal sulcus

This is a long list and, as we see in Figure 14.4, these regions collectively cover a large area of

the brain.

Medial prefrontal 
cortex

Anterior cingulate 
cortex

Anterior

Orbitofrontal 
cortex

Temporal pole

Anterior superior temporal 
sulcus (STS)

Ventral

Fusiform gyrus (invisible: 
on ventral surface)

Posterior superior temporal 
sulcus (STS)

Posterior

Temporoparietal junction
(TPJ)

Broca’s area

Dorsal 

Medial

Lateral

Figure 14.4 Schematic representation of brain regions associated with the attribution of mental

states. (Adapted from Saxe, Carey, and Kanwisher 2004)
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The list includes a number of brain areas thought to be specialized for other

information-processing functions. Broca’s area, for example, is widely held to be involved

in aspects of language processing, while the fusiform gyrus includes the fusiform face area

(which has been hypothesized as a dedicated face-processing system). This is not particu-

larly surprising. The various tasks that have been used to explore belief attribution inevit-

ably bring other capacities and abilities into play. In order to narrow the list down we need

to see which (if any) of these areas satisfy (1) and (2) above.

The first stage, corresponding to (1), is to check whether particular neural regions show

activation both in false belief and in true belief conditions. This is particularly important,

since many neuroimaging studies follow the developmental studies in focusing only on

false belief conditions. This emphasis on false belief is fine for looking at the development

of mindreading in children – since the crucial developmental measure is standardly taken

to be success on false belief tasks. But if we are looking for a neural substrate for belief

reasoning we need to consider true belief conditions as well as false ones – after all, perhaps

some of the activation in the false belief condition is due to the falsity of the belief

attributed, rather than to its being a belief.

Rebecca Saxe and Nancy Kanwisher carried out a set of false belief experiments with a

true belief condition as a control. We will look at these experiments in more detail below

(in the context of identifying mechanisms specialized for theory of mind tasks). For the

moment we need only note what happened when they did a more detailed statistical

analysis of the patterns of activation within individual subjects. They found three brain

regions where both true and false belief attribution tasks elicited activation in the very

same voxels. (Recall that a voxel is a volumetric pixel representing a small volume within the

brain.) These regions are the

■ medial prefrontal cortex (MPFC)

■ superior temporal sulcus (STS)

■ temporoparietal junction (TPJ)

Applying (1), then, significantly narrows down the field. What happens when we

apply (2)?

To apply (2) we need to control for other types of domain-general information process-

ing that might be generating activation in the candidate areas. Saxe and Kanwisher

introduced two control conditions, based on their analysis of what is required in order to

succeed on tasks involving belief attribution.

Their first observation is that when we attribute beliefs to other people we are effectively

identifying hidden causes. This is because we typically attribute beliefs when we are trying

to explain or predict behavior, and we cannot do so in terms of what is immediately

observable. So, in order to make sure that activation in the candidate theory of mind areas

really does reflect domain-specific theory of mind reasoning, we need to rule out the

possibility that what is going on is really just domain-general reasoning about hidden

causes.

To do this, Saxe and Kanwisher developed a set of stories depending on nonpsycholo-

gical hidden causes. Here are two:

368 Mindreading: Advanced Topics



■ The beautiful ice sculpture received first prize in the contest. It was very intricate.

Unfortunately, the temperatures that night hit a record high for January. By dawn, there

was no sculpture.

■ The night was warm and dry. There had not been a cloud anywhere for days. The moisture

was certainly not from rain. And yet, in the early morning, the long grasses were dripping

with cool water.

Call this the hidden causes condition.

Saxe and Kanwisher also wanted to rule out the possibility that activation is due to

general reasoning about false representations – as opposed to false beliefs. There is nothing

psychological about a false representation such as a misleading map, for example. In order

to rule out the possibility that the neural areas active in belief attribution are specialized for

information processing to do with representations in general rather than theory of mind,

Saxe and Kanwisher used a version of the false photograph task originally proposed by the

developmental psychologist Debbie Zaitchik.

Here is a false photograph version of the false belief task. As before, the subject is

presented with a story in which Sally places a marble in the basket. A photograph is taken

of the contents of the basket and placed face down. After the photograph is taken, Anne

moves the marble from the basket to the box. Everything is exactly as in the false belief

task – except that the subjects are asked where the object appears in the photograph. The

idea behind the task is that a subject who does not understand the possibility of false

representations will think that the object’s location in the photograph will be where it

really is – and so the photograph will depict the marble as being in the box.

Exercise 14.8 Assess the reasoning behind the false photograph task.

Experimental subjects were presented with a number of short stories and questions in

each of the three conditions. Saxe and Kanwisher found that there was significant acti-

vation in the three regions identified earlier (MPFC, STS, and TPJ) in the belief attribution

condition, but not in the false representation or hidden causes conditions.

Still, all this shows is that there are brain regions specialized for processing information

about mental states such as belief. These experiments do not tell us much, if anything,

about what is going in those reasons.

Neuroscientific Evidence for Simulation in
Low-Level Mindreading?

Look back at Simon Baron-Cohen’s model of the mindreading system in Figure 13.6. The

theory of mind mechanism (TOMM) is a relatively small part of the overall mindreading

system – just one out of six components. At least until recently, this part of the mind-

reading system has received by far the most attention from cognitive scientists. This is not

very surprising, since it is in many ways the most sophisticated and visible tool that we

have for navigating the social world. But, as the model brings out, we have a range of other
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tools besides explicit reasoning about beliefs, desires, and other propositional attitudes. So,

for example, we are sensitive to other people’s emotional states, to where their eyes are

directed, and to what the targets of their actions are.

Simulation theorists claim that mindreading is carried out by what they call co-opted

mechanisms. These are information-processing systems that normally serve another func-

tion and that are then recruited to help make sense of the social world. A number of

experiments have been interpreted by simulation theorists as showing that co-opted

mechanisms play a fundamental role in mindreading.

One very basic form of mindreading is the ability to read emotions off perceptible bodily

states. Facial expressions are the most obvious example, but tone and timbre of voice are

often good guides to emotions, as are global features of posture (the vitality and energy of

someone’s movements, for example). Young children start to develop their skills in this

form of mindreading at a very early age. It is an automatic and unconscious process for

normal people – fundamental to our interactions with other people, and of course to how

we respond to pictures and films. In Baron-Cohen’s model it is the job of a dedicated

component: the emotion detector.

On the simulationist view, the emotion detector is likely to be a co-opted mechanism (or

set of mechanisms). What sort of co-opted mechanisms? The most obvious candidates are

the very same mechanisms that allow people to experience emotions. The simulationist

approach to mindreading holds that there is a single set of emotion mechanisms that come

into play both when agents are experiencing emotional states and when they detect

emotions in others. Is there any evidence that this is so? Some suggestive results have

come from the study of brain-damaged patients.

Here is an example. Many studies have found that a region of the temporal lobe known

as the amygdala plays an important role in mediating fear. The experience of disgust, in

contrast, is much more closely correlated with activity in the insula, which lies in the lateral

sulcus, separating the temporal lobe from the parietal lobe. (Both the amygdala and the

insula form part of the limbic system.)

According to simulation theory, the very same mechanism that mediates the experience

of a particular emotion is recruited when the subject recognizes that emotion in someone

else. So, for example, a simulationist would expect the amygdala to be active both when

someone is undergoing fear and when they identify that fear in others. And, conversely, a

simulationist would expect damage to the amygdala to result in a patient having problems

both with the experience of fear and with identifying fear in others. The prediction,

therefore, is that damage to brain regions that play a significant role in mediating particular

emotions will result in paired deficits – in problems with experiencing the relevant emotion

and in identifying it in others.

There is evidence of paired deficits for several different emotional states:

■ Fear: Ralph Adolphs and his colleague have studied a number of patients with damage to

the amygdala. The patient S.M., for example, had her amygdala destroyed on both sides of

the brain by Urbach–Wiethe disease. She is, quite literally, fearless – although she knows

what fear is, she does not experience it. She is also significantly impaired on tests that
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require identifying fear on the basis of facial expression. Psychopathic patients are known

to have both smaller amygdalas than normal subjects and reduced capacities for

experiencing fear. It turns out that they are also much less good than normal controls at

identifying fear in others.

■ Anger: The neurotransmitter dopamine is thought to play an important role in the

experience of anger. Experiments on rats, for example, have shown that levels of

aggression can be directly manipulated by raising/lowering the rat’s dopamine levels. In

humans, dopamine production can be temporarily blocked with a drug called sulpiride.

Experiments have shown that subjects whose dopamine levels have been lowered in this

way are significantly worse than controls in recognizing anger from facial expression – but

do not have problems with other emotions.

■ Disgust: The brain area most associated with the experience of disgust is the insula.

Neuroimaging studies have shown that this area is also activated when subjects observe

facial expressions of disgust. This result is confirmed by studies of brain-damaged patients.

N.K., a much-studied patient suffering from damage to the insula and basal ganglia, has

severe problems both in experiencing disgust and in recognizing it in others. He performs

no differently from controls, however, with regard to other basic emotions (such as surprise

and fear).

Supporters of the simulationist approach to mindreading have also found evidence for co-

opted mechanisms in some much-publicized experiments on “mirror neurons.” We looked

briefly at mirror neurons in Section 9.2, as an example of what we can learn from recording

electrical activity in single neurons. (This would be a good moment to look back at

Figure 9.5 to see mirror neurons in action.)

Mirror neurons were first discovered in macaque monkeys by an Italian research group

led by Giacomo Rizzolatti in the mid-1990s. Rizzolatti and his colleagues were recording

the responses of neurons that showed selective activation when the monkey made certain

hand movements (such as reaching for a piece of food) when they noticed completely by

chance that the same neurons fired when the monkey saw an experimenter making the

same movement.

In monkeys the mirror neuron system is located in area F5 in the ventral premotor

cortex, as well as in the inferior parietal lobe. There has been considerable discussion about

whether mirror neurons exist in humans. No mirror neurons have ever been directly

detected in humans – not surprisingly, since it is not usually possible to make single-cell

recordings in humans. The evidence for mirror neurons in humans comes primarily from

fMRI studies. Studies have found a brain system that appears to have the basic “mirroring”

feature – that is, its elements show activation both when the subject performs certain

actions and when others are observed making that action. Researchers have dubbed this

system the mirror neuron system. The mirror neuron system is illustrated in Figure 14.5

and described in the accompanying caption.

Some cognitive scientists have suggested that the mirror neuron system functions as an

empathy system. It allows people to resonate to the psychological states of other people. So,

for example, studies have shown that areas in the mirror neuron system are activated both
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when the subjects feel pain and when they observe a loved one undergoing a painful

stimulus. In terms of the models that we have been using, this would mean that the mirror

neuron system could serve as a neural substrate both for TED (the emotion detector system)

and TESS (the empathy system). And, as the caption to Figure 14.5 brings out, it is also

thought that the mirror neuron system is part of what makes imitation possible.

Some of the stronger claims that have been made in this area should be treated with

caution. Quite apart from any skepticism about whether there actually are any mirror

Ventral PMC/
posterior IFG

Rostral IPL
Human PF/PFG

Posterior STS

Human MNS

Visual input to MNS

Figure 14.5 Schematic overview of the frontoparietal mirror neuron system (MNS) (pink) and its

main visual input (yellow) in the human brain. An anterior area with mirror neuron properties is

located in the inferior frontal cortex, encompassing the posterior inferior frontal gyrus (IFG) and

adjacent ventral premotor cortex (PMC). A posterior area with mirror neuron properties is located

in the rostral part of the inferior parietal lobule (IPL) and can be considered the human homolog of

area PF/PFG in the macaque. The main visual input to the MNS originates from the posterior sector

of the superior temporal sulcus (STS). Together, these three areas form a “core circuit” for

imitation. The visual input from the STS to the MNS is represented by an orange arrow. The red

arrow represents the information flow from the parietal MNS, which is mostly concerned with the

motoric description of the action, to the frontal MNS, which is more concerned with the goal of the

action. The black arrows represent reference copies of motor predictions of imitative motor plans

and the visual description of the observed action. (Adapted from Iacoboni and Dapretto 2006)
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neurons in humans, there are definite limits to the explanatory power of mirror neurons.

Macaque monkeys are not very sophisticated mindreaders, to put it mildly, and so one

might reasonably wonder about the role that can be played in mindreading by neural

mechanisms present both in humans and monkeys.

The most likely application for mirror neurons is the information processing associated

with understanding basic forms of goal-driven action – what Baron-Cohen calls the inten-

tionality detector. There is some evidence that mirror neurons are sensitive to goals (rather

than simply to bodily movements). A study published in 2001 by Alessandra Umilta and

colleagues showed that mirror neurons fire even when the monkey cannot see the final

stages of the action. They used a screen to hide the experimenter’s hand when it actually

grasped the object and found that about 50 percent of the mirror neurons usually tuned to

grasping actions were activated even in the absence of the usual visual cues for grasping. It

seems that mirror neurons are sensitive to fairly abstract properties of movements – to the

fact that they are goal-directed, rather than simply to their physical and observable

characteristics.

In any event, mirror neurons in monkeys are direct examples at the most basic neural

level of mechanisms that show the dual purpose structure at the heart of the simulationist

approach to mindreading. And much of the evidence that has been produced in support of

the existence of a mirror neuron system points to the existence of brain regions that serve

both first-person and third-person roles. They are active both when the subject performs

certain actions and/or undergoes experiences of a certain type – and when others are

observed performing those actions and/or undergoing those experiences.

Neuroscientific Evidence for Simulation
in High-Level Mindreading?

There is far less direct evidence for simulation in high-level mindreading than in the lower-

level processes that we have just been discussing. Nonetheless, there are some suggestive

results.

Simulationists differ on how exactly the process of simulation is supposed to work. For

standard simulationists, the process of simulation requires some form of inference by

analogy. In essence, the simulator works out what she would do in a given situation and

then infers (analogically) that the person she is trying to predict will do the same thing.

Radical simulationists, in contrast, think that simulation can take place without this type

of inference from oneself to others. They hold that simulation is fundamentally a matter of

adopting another person’s perspective – putting oneself into their shoes, as it were.

There is a prediction here. If standard simulation is a correct way of thinking about

mindreading then mindreading should be both a first-person and a third-person process.

The basic engine of simulation is the simulator running her own decision-making pro-

cesses offline and identifying her own mental states. The results of this first-person simula-

tion are then applied to the person being simulated. The prediction from standard

simulation, therefore, is that regions of the brain specialized for what is sometimes called
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self-reflection (i.e., identifying one’s own psychological attributes, abilities, and character

traits) will be active during tasks that require mindreading.

There is some evidence bearing this prediction out. A number of studies have shown

that self-reflection tasks elicit activation in an area of the brain thought to be involved in

high-level mindreading – the medial prefrontal cortex (MPFC – illustrated in Figure 14.4).

So, for example, in one set of studies (published by William Kelly and collaborators in

2002) subjects were presented with various written adjectives and asked some questions

about them. These questions were either perceptual (“Is this adjective written in italics?”),

self-directed (“Does this adjective describe you?”), or other-directed (“Does this adjective

describe the President?”). The self-directed questions consistently generated greater acti-

vation in MPFC.

Further support for this apparent connection between self-reflection and mindreading

came from a study published by Jason Mitchell, Mazharin Banaji, and Neil Macrae in 2005.

The experimenters scanned subjects while they were presented with photographs of other

people and asked questions about them. Some questions required mindreading (“How

pleased is this person to have their photograph taken?”), while others did not (“How

symmetrical is this person’s face?”). After a short delay the subjects were presented with

the photographs again and asked how similar they thought the other person was to

themselves. This question is important for simulation theorists because simulation is likely

to work best for people whom one thinks are similar to oneself.

These experiments produced two significant results. First, they provided further evi-

dence that MPFC is important in high-level mindreading – MPFC showed much higher

activation levels on the mindreading version of the task than on the other version. More

significant was what happened when the experimenters compared activation in MPFC on

the mindreading version of the task with the subjects’ subsequent judgments when they

were asked how similar they perceived the other person to be to themselves. It turned out

that there was a significant correlation between activation in MPFC while the subjects were

answering the mindreading questions and the degree of similarity that subjects subse-

quently observed between themselves and the person in the photograph. The greater the

perceived similarity with the person in the photograph, the higher the level of activation in

the subject’s MPFC.

The cognitive neuroscience of mindreading is clearly a fascinating and thriving area. We

have reviewed a number of important findings and experiments. It is far too early to draw

any definite conclusions. But even this brief review illustrates very clearly two important

points that emerged in earlier chapters:

■ The cognitive neuroscience of mindreading involves careful calibration of results from

different technologies. This comes across very clearly in the way experimenters have

worked through the potential implications of mirror neurons for thinking about

mindreading in humans. Single-neuron studies in monkeys have been calibrated by

functional neuroimaging in humans.

■ Neuroscientists interested in mindreading are not simply exploring the neural

implementation of cognitive information-processing models developed in abstraction
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from details about how the brain works. It is true that much of the discussion in this area is

driven by psychological experiments such as the false belief task and the cognitive models

that have been produced in response to them, but participants at all levels in the debate

clearly recognize that techniques from neuroscience have a crucial role to play in testing,

confirming, and developing cognitive models.

Summary

This chapter explored advanced topics in mindreading. We started out with a puzzle about the

emergence of mindreading. Children typically do not pass the false belief task until around 4 years

of age, but other parts of the mindreading system are in place well before that. Why the delay? We

looked at two possible explanations – Leslie’s selection processor hypothesis and Perner’s account

in terms of metarepresentation.

Both Perner and Leslie think that there is a theory of mind module dedicated to identifying and

reasoning about other people’s mental states, making it possible to understand why they are doing

what they are doing, and to predict what they will do in the future. We then explored an

alternative model of mindreading. According to simulationists, there is no dedicated mindreading

system. Instead mindreading is carried out by our “ordinary” cognitive systems running offline

with pretend inputs. We looked at two different versions of simulationism – standard

simulationism and radical simulationism.

Finally, we reviewed a range of evidence from cognitive neuroscience. Some neuroimaging

experiments reveal areas with increased activation during mindreading tasks. At the same

time, there is evidence for the simulationist hypothesis that mindreading involves co-opting

ordinary decision-making systems, both from research on mirror neurons in monkeys and also

from imaging studies showing that areas specialized for self-reflection are active in

mindreading tasks.

Checklist

Young children do not typically pass the false belief task before the age of 4, although

other parts of the mindreading system come onstream much sooner. Different

explanations have been given of this time lag.

(1) Leslie argues that the theory of mind mechanism emerges during the infant’s second year. But its

default setting is to attribute true beliefs. Overcoming that default setting requires the emergence

of an inhibitory mechanism that he calls the selection processor.

(2) Support for the selection processor interpretation comes from double inhibition experiments.

(3) For Perner, in contrast, children do not understand belief, properly speaking, until they pass the

false belief task. Understanding belief requires the possibility of metarepresentation, and an

inability to metarepresent explains failure on the task.

(4) Perner (and others) have developed accounts of pretend play on which it does not involve

metarepresentation.
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Perner and Leslie (and many other cognitive scientists) are committed to the idea that

there is a dedicated theory of mind system responsible for identifying and reasoning

about other people’s beliefs, desires, and other propositional attitudes. This basic

assumption is challenged by the simulationist approach to mindreading.

(1) Simulationists think that mindreading is carried out by “ordinary” information-processing systems

that are co-opted for mindreading. We use our own mind as a model of someone else’s mind.

(2) According to standard simulationism, we predict other people’s behavior, for example, by running

our decision-making processes offline, with pretend beliefs and desires as inputs.

(3) Radical simulationists hold that mindreading does not involve representing another person’s

psychological states. Rather, it involves representing the world from their perspective.

Cognitive neuroscientists have used a range of techniques, including single-neuron

recording and functional neuroimaging, in order to test and refine cognitive models of

mindreading. These are early days in the cognitive neuroscience of mindreading, but

some suggestive results have already emerged. For example:

(1) Neuroimaging studies have identified a number of brain areas that show increased activation

during mindreading tasks. Experiments by Saxe and Kanwisher, for example, have highlighted the

medial prefrontal cortex, the superior temporal sulcus, and the inferior parietal lobule. This is

consistent with the claim that there is a dedicated theory of mind system.

(2) There is evidence that co-opted mechanisms are used in low-level mindreading (as predicted by

the simulation theory). Areas active during the experience of basic emotions such as fear, disgust,

and anger are also active when those emotions are identified in others.

(3) Mirror neurons in area F5 of the macaque brain respond both when the monkey performs an action

and when the monkey observes an experimenter or conspecific perform that action. A number of

researchers have hypothesized a mirror neuron system in the human brain. This may play an

important role in understanding goal-directed action.

(4) There is evidence consistent with the simulation-driven processing in high-level mindreading.

Experiments have shown that areas specialized for self-reflection are also implicated in

mindreading (as predicted by standard simulationism).

Further Reading

The selection processor hypothesis was proposed in Leslie and Polizzi 1998 and then further

developed in Leslie, German, and Polizzi 2005. The hypothesis is criticized in Doherty 1999. For

Perner’s view, see Perner, Leekam, and Wimmer 1987, Perner 1993, and Perner and Roessler 2012.

Both Leslie and Perner are predicated on the assumption that children do not typically pass the

false belief task before they are 4 years old or so. For a different view, claiming that success

appears much earlier in development (even on the traditional version of the task), see Setoh, Scott,

and Baillargeon 2016 and (for a review) Scott and Baillargeon 2017.

Mindreading was one of the earliest fields to see sustained interactions and collaborations

between philosophers and psychologists. A number of influential early papers, including Heal 1986

and Gordon 1986, are gathered in two anthologies edited by Davies and Stone (1995a, 1995b).
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Both have useful introductions. The dialog is continued in the papers in Carruthers and Smith

1996. Much of this debate focuses on comparing simulationist approaches to mindreading (as

presented in Section 12.5) with the more traditional approach discussed in earlier sections (what is

often called the theory theory model of mindreading). Goldman 2006 is a book-length defense of

simulationism, written by a philosopher but with extensive discussions of the empirical literature.

Studies on the cognitive neuroscience of mindreading include Apperly et al. 2004, Samson et al.

2004, Samson et al. 2005, Saxe and Kanwisher 2005, Saxe, Carey, and Kanwisher 2004, Tamir and

Mitchell 2010, and Waytz and Mitchell 2011. Reviews can be found in Adolphs 2009, Saxe 2009,

Carrington and Bailey 2009, Abu-Akel and Shamay-Tsoory 2011, Frith and Frith 2012, and Schurz

and Perner 2015. Claims about the modularity of mindreading are critically discussed in Apperly,

Samson, and Humphreys 2005. For skepticism about the false photograph task, see Perner and

Leekam 2008.

Research into mirror neurons has been reported in many papers – see, for example, Rizzolatti,

Fogassi, and Gallese 2001. The findings are presented for a general audience in Rizzolatti, Fogassi,

and Gallese 2006 (article) and Rizzolatti and Sinigaglia 2008 (book). For more recent reviews, see

Rizzolatti and Sinigaglia 2010 and Rizzolatti and Fogassi 2014. Cook et al. 2014 presents an

alternative perspective on mirror neurons, and Kilner and Lemon 2013 offer an independent

assessment of the literature.

For more information on empirical findings about emotion recognition in brain-damaged

and normal patients, see Adolphs et al. 1994, Phillips et al. 1997, Adolphs and Tranel 2000, and

Wicker et al. 2003. See also Croker and Macdonald 2005 and (for a review) Bornhofen and

McDonald 2008.
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Overview

Consciousness is an almost bipolar topic in contemporary cognitive science. On the one hand, we

have many exciting experiments and creative theories aiming to understand what consciousness is

and how it contributes to cognition. On the other, there are powerful arguments that it is

impossible to give an information-processing model of consciousness. This chapter looks at both

sides of the debate.

Section 15.1 introduces the challenge of consciousness through Frank Jackson’s much-

discussed Knowledge Argument. We then consider the differences between conscious and

nonconscious information processing. Section 15.2 explores how these are revealed in priming

experiments and by studying the behavior of brain-damaged patients. Section 15.3 draws on these

findings to explore theories about the function of consciousness. In Section 15.4 we look at two

powerful arguments objecting to that whole way of proceeding. According to these arguments,
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functional approaches to consciousness cannot help us understand what is truly mysterious

about consciousness – at best they can shed light on what are sometimes called the “easy”

problems of consciousness. Section 15.5 presents the other side of the coin by reviewing one of

the best-established approaches to the functional role of consciousness – the global workspace

theory.

15.1 The Challenge of Consciousness:
The Knowledge Argument

We can think about the challenge here through two different perspectives on cognitive

agents. The dominant approach within cognitive science has been to look at cognitive

agents from the third-person perspective. Cognitive scientists typically work backward

from observable behaviors and capacities to information-processing mechanisms that

could generate those behaviors and support those capacities. As we have seen in earlier

chapters, they do this using a range of experimental techniques and tools, including

psychological experiments, functional neuroimaging, and computational modeling. In

adopting this third-person perspective, what cognitive scientists do is broadly continuous

with what physicists, chemists, and biologists do.

From this third-person perspective what cognitive scientists are working with and

trying to explain are publicly observable phenomena – reaction times, levels of blood

oxygen, verbal reports, and so forth. But there is another perspective that we have not

yet discussed. This is the first-person perspective. Human cognitive agents have sensa-

tions. They experience the distinctive smell of a rose, the distinctive sound of chalk on a

blackboard, the distinctive feel of cotton against the skin. They react emotionally

to events and to each other. They regret the past and have hopes and fears for the

future. From the first-person perspective we have a rich, conscious life, full of

feelings, emotions, sensations, and experiences. These are all vital parts of what make

us human. How can we make sense of them within the information-processing model of

the mind?

We can bring some of the problems into clearer focus through a thought experiment

originally proposed by the philosopher Frank Jackson. It is usually called the Knowledge

Argument. Here is the Knowledge Argument in Jackson’s own words:

Mary is confined to a black-and-white room, is educated through black-and-white books

and through lectures relayed on black-and-white television. In this way she knows

everything there is to know about the physical nature of the world. She knows all the

physical facts about us and our environment, in a wide sense of “physical” which

includes everything in completed physics, chemistry, and neurophysiology . . .

It seems, however, that Mary does not know all that there is to know. For when she is

let out of the black-and-white room or given a color television, she will learn what it is to

see something red . . .
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After Mary sees her first ripe tomato, she will realize how impoverished her concep-

tion of the mental life of others has been all along. She will realize that there was, all the

time she was carrying out her laborious investigations into the neurophysiologies of

others, something about these people she was quite unaware of. All along their experi-

ences (or many of them, those got from tomatoes, the sky, . . .) had a feature conspicuous

to them, but until now hidden from her.

(Jackson 1986, original emphasis)

When Jackson originally formulated the Knowledge Argument he offered it as a refutation

of the philosophical theory known as physicalism (or materialism). According to physical-

ism, all facts are physical facts. Physicalism must be false, Jackson argued, because in her

black-and-white roomMary knew all the physical facts that there are to know and yet there

is a fact that she discovers when she leaves the room – the fact about what it is like for

someone to see red.

Exercise 15.1 State physicalism in your own words. Do you think that Jackson’s Knowledge

Argument gives a compelling reason to reject physicalism?

Jackson no longer believes that the Knowledge Argument refutes physicalism, however,

and so we will not pursue that issue here. For our purposes what is important is that the

Knowledge Argument can also be used to argue that information-processing models of the

mind are inadequate. The argument would go like this.

1 In her black-and-white room Mary has complete knowledge of how information is

processed in the brain.

2 So, in her black-and-white room Mary knows everything that there is to know about the

information processing going on when a person has the experience of seeing red.

3 When she leaves the black-and-white room, Mary acquires new knowledge about what

goes on when a person has the conscious experience of seeing red.

4 Therefore, there must be some aspects of what goes on when a person has the conscious

experience of seeing red that cannot be understood in terms of how information is

processed in the brain.

The Knowledge Argument raises a powerful challenge to the basic framework assumption

of cognitive science that we can give a complete information-processing account of the

mind. Little is more salient to each of us than our first-person conscious experience of the

world. If, as the Knowledge Argument claims, this is something that cannot be captured in

an information-processing account of the mind, then we will have to do a very fundamen-

tal rethink of the limits and scope of cognitive science.

For some cognitive scientists, the problem of consciousness is the “last, great frontier.”

For many outside the field, in contrast, consciousness reveals the fatal flaw in cognitive

science. We will certainly not settle the issue in this book. But the remainder of this

chapter surveys some important and exciting research in contemporary cognitive science

in the context of this challenge to the very possibility of a cognitive science of

consciousness.
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15.2 Information Processing without Conscious Awareness:
Some Basic Data

One way to explore the nature of consciousness is to look at the types of information

processing and problem solving that can take place without consciousness and compare

them with those that seem to require consciousness. Among other things, that will help us

understand the function of consciousness – what it actually contributes to cognitive and

affective life. We look at two techniques for studying information-processing without

consciousness – priming experiments and double dissociations in cognitive

neuropsychology.

Consciousness and Priming

In a typical priming experiment, as illustrated in Figure 15.1, subjects are exposed very

briefly to some stimulus – an image on a screen, perhaps, or a sound. The time of exposure

is short enough that the subjects do not consciously register the stimulus. Nonetheless, the

exposure to the stimulus affects their performance on subsequent tasks – how they
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Figure 15.1 An illustration of a typical priming experiment. The images above the arrow depict

the sequence and timing of each stimulus when a tool is the target. The graph shows that people

who were presented with a congruent prime were faster to identify the target than people who

were presented with an incongruent prime. (From Finkbeiner and Forster 2008)
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complete word fragments, for example, or how quickly they can perform a basic classifica-

tion – processing that can be carried out nonconsciously.

In the experiment in Figure 15.1, subjects are asked to categorize the target as either a

face or a tool. There are two different types of prime. One type is congruent with the target

(e.g., another tool, if the target is a tool). The other is not congruent (e.g., a tool, if the

target is a face). The experiment measures the response latency (the time it takes the subject

to classify the target correctly). As the graph illustrates, the experimenters found a signifi-

cant priming effect for congruent prime–target pairs.

What does this reveal? Think about what counts as a congruent prime–target pair.

Figure 15.1 gives one example – a saw and a hammer. These are congruent because they

both fall under a single category. Noncongruent prime–target pairs fall under different

categories. So, what the priming effect appears to show is that the information processing

required to carry out basic categorization can take place nonconsciously. The processing

time for correctly classifying a congruent target is less than for a noncongruent target, the

standard explanation runs, because the subject is already thinking nonconsciously about

the relevant category.

A number of cognitive scientists have objected to the priming paradigm, worried about

how one can show that primes really are invisible. A typical method of doing this is to

identify a threshold by progressively lowering the presentation time of a stimulus until

subjects identify it at chance. This is supposed to show that any stimulus presented for a

length of time at or below the threshold will be nonvisible and nonconscious. But one

problem with this is that the threshold of visibility can vary. There is some evidence that

primes become more visible when they are followed by congruent targets. Varying the

mask can also alter the threshold of visibility.

More recent studies have been very sensitive to these methodological issues, and the

majority view now is that priming effects do occur, and hence that there are some kinds of

nonconscious information processing. The crucial question is: How “smart” is this non-

conscious information processing?

One of the most important areas where priming effects have been studied is language

processing. In these experiments primes and targets are both words. The most controversial

experiments have focused on what is known as semantic priming (as illustrated in Box 15.1).

Semantic priming occurs when there is a priming effect that can only be explained through

information processing about the meaning of words – as opposed, for example, to their

phonology (how they are pronounced) or their orthography (how they are spelled).

There is interesting evidence for semantic priming from studies with bilingual subjects

where prime and target are in different languages, particularly where those languages are in

very different scripts (Chinese and English, for example). Many studies have shown robust

priming effects when subjects are asked to decide whether or not a target string of letters is

a proper word or not (what is called the lexical decision task). Interestingly, the priming

effect tends to occur only when the prime is in the dominant (first) language (L1) and the

target is in the second language (L2).

Semantic priming is potentially very significant, because semantic processing is widely

held to be very high-level and dependent upon conscious awareness. To go back to the
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distinction we looked at in Chapter 8, semantic processing has typically been thought to

be nonmodular (as opposed to processes such as phonological parsing, often thought to be

modular). So, semantic priming is important because it seems to show that there can be

information processing that is both nonmodular and nonconscious.

Exercise 15.2 Explain in your own words why the distinction between modular and nonmodular

information processing is important for thinking about nonconscious information processing.

Nonconscious Processing in Blindsight and
Unilateral Spatial Neglect

Cognitive neuropsychologists study cognitive disorders, primarily resulting from brain

damage. The guiding idea is that we can work backward from what happens when things

BOX 15.1 A Typical Semantic Priming Experiment

Can be presented
consciously or
subconsciously

Time

(Fixation point)

CEMENT
(Incongruent

prime)

APPLE
(Congruent

prime)

OR
BANANA

(Congruent
target)

Measure response time –
should be faster for
congruent primes, even
when presented
subconsciously

There are many variations. Sometimes the words are presented in different languages, as
discussed in the main text, and sometimes the semantic congruence varies for the target instead of
the prime. Participants can be asked to hit a button simply when they see the target word or make
some more difficult judgment about the word (e.g., whether it is in fact a word).
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go wrong to how they function in the normal case. So, for example, if in one type of brain

damage we see ability A functioning more or less normally while ability B is severely

impaired, then we can infer that in some sense A and B are independent of each other –

or, as cognitive neuropsychologists call it, we can infer a dissociation between them.

A double dissociation occurs when we have a dissociation in each direction – that is, in

one disorder we have ability A functioning normally with B significantly impaired, while in

a second disorder we have ability B functioning normally with A significantly impaired.

Double dissociations provide stronger evidence that A and B are independent of each other.

Exercise 15.3 Explain in your own words why a double dissociation is a better sign of

independence than a single dissociation.

Cognitive psychologists studying psychological disorders caused by brain trauma have

identified very interesting dissociations involving consciousness. There are surprisingly

many tasks that can be carried out nonconsciously by brain-damaged patients, even

though they are typically performed with conscious awareness by normal subjects. In

particular we will look at two much-studied disorders – unilateral spatial neglect and

blindsight.

Unilateral spatial neglect (also known as hemiagnosia or hemineglect) is relatively

common and typically occurs after damage to the right hemisphere, particularly damage

to the parietal and frontal lobes. Its defining feature is that patients lack awareness of

sensory events on the contralesional side of space (on the opposite side of the world to the

side of the brain that is damaged). In the vast majority of cases, the neglected side is the

left-hand side.

The neglect phenomenon was very strikingly illustrated by two Italian neuropsycholo-

gists in 1978. Eduardo Bisiach and Claudio Luzzatti asked two neglect patients to describe

from memory the central square in Milan with the famous Duomo (cathedral). The

patients were initially asked to describe the square as if they were standing in front of the

Duomo. As predicted, the patients failed to describe the houses and shops on the left-hand

side of the square (from their vantage point in front of the Duomo). Bisiach and Luzzatti

then asked the patients to orient themselves differently, so that they were imagining

themselves on the edge of the square looking at the Duomo. Now the patients accurately

described the houses and shops they had previously neglected, and instead missed out the

side of the square that they had previously described. Figure 15.2 shows further examples

of typical visual deficits in neglect patients.

Neglect also affects action. A neglect patient might only shave or apply makeup to one

side of their face, for example. Or they might eat only from one side of a plate.

The blindsight patients who have been most studied report little to no awareness in one

side of their visual field. They have what is called a scotoma (a region of very diminished

visual acuity that does not occupy the whole visual field). In both blindsight and unilateral

spatial neglect, patients report themselves to be unaware of what is going on in part of their

visual field. The etiology (cause) is different, however. The impairment in blindsight is

typically due to lesions in the primary visual cortex (V1, or the striate cortex).
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For our purposes, the interesting feature of both blindsight and unilateral spatial neglect is

that patients appear to have surprising residual visual functioning despite reporting a more

or less complete lack of visual awareness. Blindsight patients can respond to stimuli in the

scotoma, and visual neglect patients can respond to stimuli in the neglected region of space.

One challenge in exploring the residual abilities of blindsight patients is that they will

often find the experiments absurd. Ernst Pöppel, whose important 1973 article coauthored

with Douglas Frost and Richard Held was one of the first to study blindsight, reported a

patient irritatedly saying “How can I look at something that I haven’t seen?”when asked to

direct his eyes to a target in his blind field.

(a)

(b)

(c)

Figure 15.2 Examples of deficits found in patients with left spatial neglect (damage to the right

hemisphere of the brain). (a) Unilateral neglect patients typically fail to mark the lines on the

contralesional (here, left) side of a sheet of paper. (b) Patients are asked to bisect each line.

Their markings are typically skewed to the right, as if they do not see the leftmost segment.

(c) Patients are either asked to draw something from memory or to copy another illustration placed

in front of them. In both cases, unilateral neglect patients tend to omit parts on the

contralesional side. (From Driver and Vuilleumier 2001)
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To overcome this challenge, experimenters have used nonverbal forced choice tests. In

essence, patients are forced to guess in situations where they feel that they have no basis to

make a judgment or to perform an action. The choices are usually binary – is the stimulus

moving or stationary, is it high or low in the visual field, is it horizontal or vertical?

Experimenters often find that blindsight patients perform significantly better

than chance, even when the patients describe themselves as guessing (and so would

be expected to perform at chance levels). There is strong evidence that blindsight

patients can localize unseen stimuli in the blind field, that they can discriminate orienta-

tion, and that they can detect moving and stationary figures randomly interspersed with

blank trials.

Neuropsychologists have also found that blindsight patients are capable of some types

of form perception. Here is an example from a striking set of experiments performed by

Ceri Trevethan, Arah Sahraie, and blindsight pioneer Larry Weiskrantz, working with a

patient known by his initials D.B. Figure 15.3 depicts line drawings of animals that were

presented within D.B.’s blind field.

The figures were shown at very low contrast (2 percent – although they are depicted in

high contrast in Figure 15.3). The patient was told that he was being shown a picture of an

animal and asked to guess which animal it was. The figure indicates the responses given,

with correct answers underlined. As illustrated, D.B. achieved 89 percent accuracy, despite

reporting no awareness whatsoever of any of the figures.

Spatial neglect patients also have considerable residual abilities. A famous example

identified by neuropsychologists John Marshall and Peter Halligan is illustrated in

Figure 15.4. Marshall and Halligan showed P.S., a neglect patient, the two pictures in the

diagram – one of a normal house and one of a house on fire. Since the flames were on the

left-hand side of the picture, P.S. did not report seeing any difference between the two

pictures. Nonetheless, when asked which house she would prefer to live in, P.S. reliably

chose the house that was not on fire (9 times out of 11).

Italian neuropsychologists Anna Berti and Giacomo Rizzolatti used a semantic priming

paradigm to explore whether neglect patients could identify semantic categories in their

neglected field. Neglect patients were presented with priming stimuli in their neglected

visual field and then asked to categorize objects presented in the normal field. As discussed

above, the assumption for priming experiments is that, when the prime stimulus and the

target stimulus are congruent (i.e., from the same category), then categorization will be

easier and quicker, provided that the prime stimulus is processed. Berti and Rizzolatti found

the predicted effect in patients who denied all awareness of the prime stimuli and so

concluded that semantic information is processed in the neglected visual field.

15.3 So What Is Consciousness For?

Experiments on both brain-damaged and normal subjects indicate that many information-

processing tasks can be performed without conscious awareness – or, more precisely, can be
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performed by subjects who do not report any conscious awareness of the discriminations

and selections that they are making. This leaves us with a puzzle. What exactly does

consciousness contribute? Why do we need it? In order to make progress on this we need

to look, not just at what blindsight and neglect patients can do, but also at what they

can’t do.

ant

ant fish fish
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elephant elephanthorse horse
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horse

fox

fox

cow

cow
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hen

crocodile

crocodile

bear
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bird
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grasshopper

grasshopper

dog dog

Figure 15.3 D.B.’s responses to pictures of animals presented in his blind field. Correct answers

are underlined. (From Trevethan, Sahraie, and Weiskrantz 2007)
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What Is Missing in Blindsight and Spatial Neglect

Blindsight and neglect patients have considerable residual abilities that can be teased out

with careful experiments, but there are still massive differences between these patients and

normal subjects.

One very striking fact is just how difficult it is to elicit the residual abilities. Neither

blindsight nor neglect patients will voluntarily do things in their blind or neglected fields.

This is most obvious in neglect patients. What characterizes the disorder is not just that

patients report a complete lack of awareness of what is going on in the neglected visual field.

It is also that they do not direct any actions within those regions of space that fall within the

neglected visual field. This is the case both for their own personal, bodily space (so that male

patients do not shave on the neglected side of their face) and for external space (so that they

do not direct actions at objects located on the neglected side of the world as they perceive it).

The same holds for blindsight patients, who never initiate actions toward the blind field,

despite being able to point to stimuli in the blind field (when forced to do so).

This suggests a hypothesis about the difference between conscious and nonconscious

information processing. Both normal and brain-damaged subjects receive many different

types of nonconscious information about the world and about their own bodies. But

subjects can only initiate voluntary actions on the basis of information that is conscious.

Only conscious information allows subjects to identify targets and to plan actions toward

them. The neuropsychologists David Milner andMelvyn Goodale have developed a sophis-

ticated theory of vision that is built around this idea that one of the roles of consciousness

is to permit voluntary and deliberate action.

Milner and Goodale: Vision for Action and
Vision for Perception

Milner and Goodale’s theory is based on the existence of two anatomical pathways carry-

ing visual information in the primate brain. We looked at some of the neurophysiological

Figure 15.4 An illustration of the two houses presented to P.S. The houses are identical,

except that one has flames shooting out of its left side. Because P.S. possesses left-side spatial

neglect, she reported not being able to see the flames but still consistently selected the other

house when asked which house she would prefer to live in. (From Marshall and Halligan 1988)
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evidence for these two anatomical pathways in Section 3.2 when we reviewed the import-

ant Mishkin and Ungerleider experiments. Visual information takes two different routes

from the primary visual cortex. One pathway, the ventral pathway, projects to the tem-

poral lobe. A second pathway, the dorsal pathway, carries information to the posterior

parietal lobe. (See Figure 3.5 for an illustration of the two pathways.)

The two pathways have very different functions. For Mishkin and Ungerleider, as we saw

in Chapter 3, the crucial functional distinction is between the “what” system, concerned

with object identification and subserved by the ventral pathway, and the “where” system,

concerned with locating objects in space. Milner and Goodale have a related but somewhat

different interpretation. They distinguish two types of vision, which they term vision for

action and vision for perception.

Vision for action has to do with how actions are executed. When you reach out to grasp

something, for example, your hand automatically prepares itself, so that the fingers are at

an appropriate aperture. This involves complex information processing, including esti-

mates of the likely size of the object, taking into account distance and so forth. We all also

constantly engage in online correction of movement, compensating for environmental

change or initial errors of trajectory. The relevant processing here takes place in the dorsal

pathway;

Vision for perception, on the other hand, deals with actually initiating deliberate action.

Vision for perception allows targets to be identified and goals to be set. It depends upon

information from the ventral stream. According to Goodale and Milner, only information

relevant to what they call vision for action is actually conscious. Conscious awareness is

restricted to the ventral pathway while the dorsal stream governs the visual control of

movement nonconsciously.

Milner and Goodale rely heavily on experimental studies of both normal and brain-

damaged patients. Here are two examples that illustrate how consciousness is and is not

involved in vision.

Milner and Goodale’s patient D.F. is one of the most studied and important neuro-

psychological patients. After carbon monoxide inhalation, D.F. developed what is known

as visual form agnosia, substantially impaired visual perception of shape and orientation.

The neural damage underlying her agnosia involved very serious damage to the

ventral pathway (i.e., the system responsible for consciously selecting goals and initiating

action).

D.F. performs many visuomotor tasks successfully, even though she is unable to recog-

nize or identify the relevant features in her environment. Figure 15.5 illustrates a much-

discussed example of two tasks where D.F. performs very differently. When asked to “post”

a card into a slot D.F. was able to match her movements to the orientation of the slot and

performed almost as successfully as normal subjects. But when asked to make an explicit

judgment about the slot’s orientation D.F.’s responses were almost random. This was the

case whether she was asked to describe the orientation verbally or nonverbally (by rotating

a card to match the orientation). According to Milner and Goodale, D.F. is receiving

nonconscious information about orientation through the dorsal pathway, but because of

damage to her ventral pathway is not consciously aware of the orientation.
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Visual illusions provide another source of evidence for the dissociation between (noncon-

scious) vision for action and (conscious) vision for perception. Visual illusions affect how

subjects consciously perceive the size and shape of objects. A number of experimenters have

found, however, that the illusion does not carry over to visuomotor behavior. Subjects will

report seeing an illusion, but when asked tomake appropriate movements they will configure

their grip and make other adjustments according to the correct dimensions of the relevant

objects, not the dimensions that they report perceiving. So conscious perception (vision for

perception) dissociates from (nonconscious) information relevant to the control of visuomotor

behavior (vision for action). Figure15.6illustrates the experimentusedbyAglioti,DeSouza, and

Goodale to identify this dissociation, utilizing what is known as the Ebbinghaus illusion.

In addition, neuroimaging studies, such as those published by Fang Fang and Shen He in

2005, suggest that ventral stream activity is correlated with consciousness, while activity in

the dorsal stream is not. Fang and He compared activation levels in areas known to be very

involved in object processing in the dorsal and ventral streams, respectively. They used a

technique known as interocular suppression in which one eye is presented with an image of

an object while the other eye is presented simultaneously with a high-contrast pattern that

blocks conscious awareness of the presented image.

This paradigm enabled Fang and He to examine activation levels in the dorsal and

ventral streams in the absence of conscious awareness and to compare those levels with

activation levels when conscious awareness of the image was not suppressed. They found

robust levels of activity in the dorsal stream even in the nonconscious conditions. In

contrast, ventral stream activation was confined to the conscious condition.

Perceptual
orientation
matching

DF Control

Visuomotor
“posting”

Figure 15.5 In this experiment, subjects were asked either to “post” a card into a slot or to

rotate another hand-held card to match the orientation of the slot. The angle of the slot varied

across trials, although in each case, the diagrams have been normalized so that the correct result is

vertical. Normal subjects can perform both tasks with little difficulty. Patient D.F., in contrast, can

carry out the visuomotor task almost as well as normal subjects, but her responses in the explicit

matching task are almost random. (From Milner and Goodale 1998)
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In conclusion, Milner and Goodale’s distinction between (conscious) vision for percep-

tion and (nonconscious) vision for action, together with the evidence supporting it from

brain-damaged and normal subjects, both supports and clarifies the hypothesis that con-

sciousness is important for initiating action. If Milner and Goodale are correct, then

conscious awareness is key for identifying targets and for macro-level planning for how

to effect actions. But conscious awareness is not typically involved in the fine-grained,

online control of bodily movements.

What Is Missing in Masked Priming

Masked priming experiments offer powerful evidence of nonconscious semantic process-

ing. At the same time, though, information-processing in priming experiments is very

different from normal, conscious information-processing.

One key finding here is it is hard to retain information without conscious awareness. So,

semantic information processed below the threshold of consciousness in masked priming

experiments is very transitory and short-lived. Here is an illustration from experiments

published by Anthony Greenwald, Sean Draine, and Richard Abrams in 1996. The authors

Figure 15.6 In the Ebbinghaus illusion, two circles are illusorily seen as differently sized,

depending on what surrounds them. The figure illustrates experiments published by Aglioti,

DeSouza, and Goodale in 1995. The experimenters measured the size of the opening between

fingers and thumb when subjects were asked to pick up two disks that they reported as being

differently sized. They found no significant differences in grip aperture, suggesting that this aspect

of the fine-grained control of grasping draws on different types of visual information than those

that yield conscious awareness of the disks.
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used a typical categorization task, asking subjects to identify first names as male or female

or to classify words as pleasant or unpleasant in meaning. They succeeded in eliciting a

robust priming effect when subjects were presented with a congruent masked prime. This

effect was present both when the prime was presented subliminally and when it was

presented supraliminally (above the threshold of consciousness). This allowed Greenwald,

Draine, and Abrams to study the differences between subliminal priming and supraliminal

priming. The particular dimension they explored was what happened when they varied the

time between prime and trial (the so-called stimulus-onset asynchrony, SOA).

Greenwald, Draine, and Abrams found a significant difference. In supraliminal cases,

where the subjects were conscious of the prime, the priming effect was robust across all

SOAs. The length of the delay between prime and target did not make a significant

difference. In contrast, in the subliminal cases, with the subjects not consciously perceiv-

ing the prime, the effect was robust only at the shortest intervals and disappeared com-

pletely once the SOA went above 100 ms.

This experiment suggests an additional hypothesis about the function of conscious

awareness, namely, that consciousness allows information to be explicitly retained and

maintained. According to this hypothesis, information that is picked up nonconsciously

can indeed be deployed in relatively sophisticated tasks, but it can be used only within a

very limited time horizon. Conscious information, in contrast, is more transferable and

flexible. It can be used beyond the here and now. There are definite parallels between this

idea and Goodale and Milner’s distinction. Vision for action is restricted to the online

control and fine-tuning of behavior. It does not persist in the way that conscious visual

information persists. That is one reason why Goodale and Milner think that the conscious

vision-for-perception system is required for high-level action-planning.

15.4 Two Types of Consciousness and the Hard Problem

Two related ideas have emerged about the function of consciousness. First, conscious

awareness seems extremely important for planning and initiating action (as opposed to

the online control of behavior, which can be carried out through nonconscious infor-

mation processing). Second, conscious information persists longer than nonconscious

information. In the next section we will look at one example of a theory of consciousness

that can accommodate these two ideas. First, though, we need to consider some important

concerns about this whole way of proceeding that have been raised by the philosophers

Ned Block and David Chalmers.

The philosopher Ned Block has cautioned cognitive scientists to be very careful about

drawing conclusions about the nature and function of consciousness from neuropsycho-

logical disorders such as blindsight and unilateral spatial neglect. He thinks that these

conclusions rest on flawed inferences. What causes the problem, according to Block, is a

confusion between two very different concepts of consciousness. He calls these phenomenal

consciousness and access consciousness. Here is how he characterizes the two notions, which

he terms P-consciousness and A-consciousness, respectively:
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Phenomenal consciousness

P-consciousness is experience . . . We have P-conscious states when we see, hear, smell,

taste, and have pains. P-conscious properties include the experiential properties of

sensations, feelings, and perceptions, but I would also include thoughts, wants, and

emotions. (Block 1995b)

Access consciousness

A state is A-conscious if it is poised for direct control of thought and action. To add more

detail, a representation is A-conscious if it is poised for free use in reasoning and for

direct “rational” control of action and speech. (The rational is meant to rule out the kind

of control that obtains in blindsight.) (Block 1995b)

Exercise 15.4 Give your own examples of A-consciousness and P-consciousness and describe

the difference between them in your own words.

From Block’s perspective, the real problem of consciousness is the problem of under-

standing P-consciousness. All of the things that we have been looking at in the previous

section, however, are really examples of A-consciousness. This is the “confusion” that he

identifies in the title of his influential paper “On a confusion about a function of

consciousness.”

According to Block, the experiments and studies discussed in the previous section

ultimately only inform us directly about the function of A-consciousness. They do not

directly address the function of P-consciousness. Our two hypotheses about the function of

consciousness are hypotheses about the difference between conscious information pro-

cessing and nonconscious information processing. This does not get to the heart of what

Block sees as the real problem of consciousness, which has to do with how and why we

experience the world the way we do.

Block’s distinction between A-consciousness and P-consciousness is related to further

distinctions drawn by the philosopher David Chalmers in his influential book The Con-

scious Mind and other writings. Chalmers thinks that there is no single problem of con-

sciousness. Instead, he thinks that we need to make a distinction between a cluster of

relatively easy problems and a single, really difficult problem – what he calls the “hard

problem” of consciousness.

Here are some examples of what Chalmers provocatively identifies as easy problems of

consciousness:

■ explaining an organism’s ability to discriminate, categorize, and react to environmental

stimuli;

■ explaining how a cognitive system integrates information;

■ explaining how and why mental states are reportable;

■ explaining how a cognitive system can access its own internal states;

■ explaining how attention gets focused;

■ explaining the deliberate control of behavior;

■ explaining the difference between wakefulness and sleep.
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In Block’s terminology these are different aspects of understanding A-consciousness. In the

last analysis, they are all problems to do with how an organism accesses and deploys

information.

Chalmers recognizes that “easy” is a relative term. None of the so-called easy problems

has yet been solved, or even partially solved. The reason he calls them easy problems is that

at least we have some idea of what a solution would look like. The easy problems are all

problems that are recognizable within the basic framework of cognitive science and scien-

tific psychology. People write papers about them, reporting relevant experiments and

constructing theories.

According to Chalmers, though, no amount of progress on the easy problems of con-

sciousness will help with the hard problem. Here is how he characterizes the hard problem:

The really hard problem of consciousness is the problem of experience. When we think

and perceive, there is a whir of information-processing, but there is also a subjective

aspect. As Nagel (1974) has put it, there is something it is like to be a conscious organism.

This subjective aspect is experience. When we see, for example, we experience visual

sensations: the felt quality of redness, the experience of dark and light, the quality of

depth in a visual field. Other experiences go along with perception in different modal-

ities: the sound of a clarinet, the smell of mothballs. Then there are bodily sensations,

from pains to orgasms; mental images that are conjured up internally; the felt quality of

emotion, and the experience of a stream of conscious thought. What unites all of these

states is that there is something it is like to be in them. All of them are states of

experience.

It is undeniable that some organisms are subjects of experience. But the question of

how it is that these systems are subjects of experience is perplexing. Why is it that when

our cognitive systems engage in visual and auditory information-processing, we have

visual or auditory experience: the quality of deep blue, the sensation of middle C? How

can we explain why there is something it is like to entertain a mental image, or to

experience an emotion? . . .

If any problem qualifies as the problem of consciousness, it is this one.

Exercise 15.5 In your own words characterize the proposed distinction between what Chalmers

calls the easy problems of consciousness and what he calls the hard problem.

In Chalmers’s phrase, looking at what happens in masked priming experiments or at the

differences between normal subjects and blindsight patients can only help with the easy

problems of consciousness. None of these things can possibly help with the hard problem

of consciousness. The differences between normal subjects and patients suffering from

blindsight or spatial neglect, or between subliminal and supraliminal, are differences in

access to information. They cannot help us understand the nature of experience or what it

is to be phenomenally conscious. In fact, Chalmers draws a very drastic conclusion from

his distinction between easy and hard problems. He thinks that the hard problem of

consciousness is in principle intractable to cognitive science (or any other kind of science).
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Without trying to settle the matter one way or the other, it seems plausible that progress

is going to depend upon having a better idea of what an information-processing account of

access consciousness might look like. Discussing the limits that there might or might not

be to a particular type of explanation will be much easier when there is a particular example

on which to focus. In the next section we will look at the global workspace theory of

consciousness, which is an interesting candidate for an information-processing solution to

some of the problems that Chalmers identifies as the easy problems of consciousness.

15.5 The Global Workspace Theory of Consciousness

Global workspace theory was originally proposed by the psychologist and cognitive scien-

tist Bernard Baars in his book A Cognitive Theory of Consciousness, published in 1988. Since

then it has been taken up and developed by many others, including the neuroscientists

Antonio Damasio and Stanislas Dehaene, as well as the philosopher Peter Carruthers. More

recent presentations (in line with the general turn toward the brain in cognitive science)

have emphasized the neural dimension of global workspace theory.

Global workspace is not, of course, the only theory of consciousness currently being

discussed by cognitive scientists. But it fits very naturally with many of the topics that

we have been discussing in this chapter (and indeed throughout the book). In Block ’s

terminology, global workspace theory is a theory of access consciousness – a theory of

how information is made available for high-level cognition, action-planning, and

speech. The theory is based on an analysis of the function of consciousness that directly

addresses many of what Chalmers identifies as “easy” problems of consciousness. And

finally, it draws on ideas that we have discussed earlier in the book – including the idea

that the mind has both modular and nonmodular components and the idea that

attention serves a “gatekeeper” function in controlling what crosses the threshold of

conscious awareness.

The Building Blocks of Global Workspace Theory

We will focus on the version of global workspace theory presented by Stanislas Dehaene

and collaborators. Stanislas Dehaene and Lionel Naccache give a very clear account of the

theoretical underpinnings of the global workspace theory in their 2001 article “Towards a

cognitive neuroscience of consciousness: Basic evidence and a workspace framework.”

They propose the theory as the best way of making sense of the basic functional benefits

of consciousness within a framework set by some widely accepted assumptions about the

architecture of the mind.

Dehaene and Naccache focus in particular on three different things that they believe

consciousness makes possible. These are:

■ the intentional control of action

■ durable and explicit information maintenance

■ the ability to plan new tasks through combining mental operations in novel ways
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They consider these three functions of consciousness relative to two basic theoretical

postulates about mental architecture and the large-scale organization of the mind.

The first is a version of the modularity theory that we explored at length in Chapter 8.

Modular processes have two key features. They are domain-specific and informationally

encapsulated. That is to say, they are each dedicated to solving circumscribed types of

problem that arise in very specific areas and in solving those problems they typically work

with restricted databases of specialized information. Many cognitive tasks involve a series

of modules – executing an action is a good example – but, according to the classical version

of modularity theory, there are some cognitive tasks that cannot be carried out by modular

systems. These are tasks that are domain-general (they span a range of cognitive domains)

and that can only be solved by drawing upon the full range of information that the

organism has available to it. The global workspace is in essence a metaphorical name for

this type of domain-general information processing.

Exercise 15.6 Review the discussion of modularity in Chapter 8.

Dehaene and Naccache suggest that the distinction between the conscious and non-

conscious minds maps onto the distinction between modular processing and nonmodular

processing. Consciousness is restricted to information within the global workspace.

Their second theoretical postulate has to do with how information becomes available to

the global workspace. Attention is the key mechanism here. It functions as a gatekeeper,

allowing the results of modular information processing to enter the global workspace. For

the global workspace theory, attention and consciousness are very closely linked. This way

of thinking about the role of attention has a long pedigree within cognitive science, going

back to the pioneering work of Donald Broadbent, reviewed in Section 1.4. Attention is

thought of both as a filter (screening out unnecessary information, as in the cocktail party

effect) and as an amplifier (allowing information that would otherwise have been uncon-

scious to become available to consciousness).

The Global Neuronal Workspace Theory

Three versions of the global workspace theory are illustrated in Figure 15.7, showing how

the workspace idea has evolved over the last 30 years.

The first version (under a different name) was the theory of attention originally pro-

posed by Donald Norman and Tim Shallice. As the figure illustrates, attention performs

what Norman and Shallice term contention scheduling. Contention scheduling is required

when different cognitive systems propose competing responses (whether cognitive or

behavioral) to a single set of stimuli. Contention scheduling effectively resolves the com-

petition to select a single response, which can either be an output to the action systems or

can be fed back into the cognitive systems.

The terminology of global workspace was introduced by Bernard Baars in the late 1980s.

One version of his theory is depicted in the figure, showing very clearly how the global

workspace is envisioned as a conscious window between nonconscious inputs and con-

scious outputs.

The Global Workspace Theory of Consciousness 397



A much more recent version of the theory is depicted on the right side of Figure 15.7. It

was developed by Stanislas Dehaene, Michel Kerszberg, and Jean-Pierre Changeux. This

shares some features with the other two versions, particularly the idea that the global

workspace receives inputs from different cognitive modules and then sends outputs to

motor systems. The Dehaene, Kerszberg, and Changeux theory is much more strongly

grounded in hypotheses about neural implementation and connectivity – which is why

they call their theoretical construct the global neuronal workspace, rather than simply the

global workspace. This emerges even more clearly in Figure 15.8.
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Figure 15.7 In the Norman and Shallice 1980 model (top left), conscious processing is involved in

the supervisory attentional regulation, by prefrontal cortices, of lower-level sensorimotor chains.

According to Baars 1988, conscious access occurs once information gains access to a global

workspace (bottom left), which broadcasts it to many other processors. The global neuronal

workspace (GNW) hypothesis (right) proposes that associative perceptual, motor, attention,

memory, and value areas interconnect to form a higher-level unified space where information is

broadly shared and broadcasted back to lower-level processors. The GNW is characterized by its

massive connectivity, made possible by thick layers II/III with large pyramidal cells sending long-

distance cortico-cortical axons, particularly dense in prefrontal cortex. (From Dehaene and

Changeux 2011)
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Figure 15.8 makes plain the distributed nature of the global neuronal workspace, as

envisaged by Dehaene and his collaborators. They see the modular part of the mind as

composed of many interconnecting modules that feed into each other in a hierarchical

manner. (The hierarchy is depicted by concentric circles, and the closer the circles to the

center the higher their place in the hierarchy.) Some of the hierarchical modules form fully

automatic and nonconscious networks. Others in contrast have amplified levels of activity

that allow them to feed into the global workspace.

Hierarchy of modular
processors

Automatically
activated
processors

Modular
processors

Workspace
units

Type of
processing:

Routine Novel Effortful Errors Automatized

High-level processors

with strong long-distance
interconnectivity

Processors mobilized
into the conscious
workspace

Sup. temporal sulcus

Area 7A

Area 19

Area 46

Ant. cing.

Parahipp. gyrus

Post. cing. & RSP

Time

(a)

(c)

(d)

(b)

Figure 15.8 The neural substrates of the global workspace. (a) Hierarchy of connections between

different processors in the brain. Note the strong long-distance connections possessed by the higher

levels. (b) Proposed anatomical substrate of the global workspace. This includes a network linking

the dorsolateral prefrontal, parietal, temporal, and anterior cingulate areas with other subcortical

regions (RSP = retrosplenial region). (c) Neural dynamics of the global workspace, derived from a

neural simulation of the model shown in (a). The activation levels of various processor units (top

lines) and workspace units (bottom lines) are shown as a function of time. (d) Different parts of the

global workspace network activated by different tasks, including generation of a novel sequence of

random numbers, effortful arithmetic, and error processing. (From Dehaene and Naccache 2001)
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The global neuronal workspace itself is not a single neural location (as the metaphor of a

workspace might initially suggest), but rather a distributed network of high-level processors

that are highly connected to other high-level processes. The candidate areas identified

include the prefrontal, parieto–temporal, and cingulate cortices – all areas that we have

discussed in the context of different types of high-level cognition at various points in this

book. The lower portion of Figure 15.8 includes a neural network simulation of the global

neuronal workspace and when it becomes engaged, in addition to an fMRI diagram

indicating activation levels across the hypothesized network during high-level conscious

tasks such as mental arithmetic.

The hypothesis is that the global neuronal workspace is generated by the activities of a

particular type of neuron called pyramidal neurons. Pyramidal neurons are very wide-

spread in the mammalian cortex and particularly dense in the prefrontal, cingulate, and

parietal regions (all hypothesized to be important in the global neuronal workspace). They

are characterized by a single long axon and heavily branched dendrites, which allow them

to communicate with many other neurons and with distant brain areas. Dehaene and

collaborators hypothesize that networks of pyramidal neurons connect specialized modu-

lar processes and allow their outputs to be broadcast across the brain so that they are

available for action-planning, verbal report, and other high-level cognitive processes.

Exercise 15.7 Explain in your own words how the global neuronal workspace theory

incorporates the hypotheses about the function of consciousness identified in Section 14.4.

15.6 Conclusion

There are two very different approaches to consciousness. On the one hand there are those

who think that consciousness is a mystery that we have no idea how to tackle with the

tools and methods of cognitive science. On the other hand, we have thriving research

programs that study different aspects of the conscious mind and how consciousness

contributes to action and cognition.

The “mysterians,” as they are sometimes called, hold that the various research programs

we have looked at only touch upon the “easy” aspects of the problem of consciousness – at

best they can only explain access consciousness, as opposed to the really tough problem of

explaining how and why we are phenomenally conscious. The global neuronal workspace

theory was primarily developed to explain how consciousness can make a difference to

cognition. The theory gives an account of why some information becomes conscious and

how that information has a distinctive role to play in higher-level cognition. Mysterians

will say that this account is all well and good, but cannot come to grips with the “hard

problem” of explaining the distinctive experience of being conscious.
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In response, cognitive scientists working on consciousness may well respond that the so-

called hard problem of consciousness will disappear once we have a good enough under-

standing of the various phenomena lumped together under the label “access conscious-

ness.” This is the view taken by the philosopher Daniel Dennett, whose books Content and

Consciousness and Consciousness Explained have been very influential in discussions of

consciousness.

Perhaps the source of the problem is that we do not have any real idea of what a

complete account of access consciousness would look like. As its originators would be the

first to admit, the global neuronal workspace theory is programmatic in the extreme. So are

its competitors. It may well be that if we were in possession of something much more like a

complete theory then we would be less likely to have intuitions about the impossibility of

solving the so-called hard problem. What makes the intuitions seem compelling is that our

knowledge is so incomplete and our investigations of the cognitive science of conscious-

ness at such an early stage.

There is a lesson to be learned from debates in the nineteenth and early twentieth

century about vitalism in biology. Vitalists such as the philosopher Henri Bergson and

the biologist John Scott Haldane believed that the mechanist tools of biology and chemis-

try were in principle incapable of explaining the difference between living organisms and

the rest of the natural world. Instead, we need to posit a vital force, or élan vital, that

explains the distinctive organization, development, and behavior of living things.

Certainly, vitalism has no scientific credibility today. The more that was discovered

about the biology and chemistry of living things, the less work there was for an élan vital,

until finally it became apparent that it was an unnecessary posit because there was

no problem to which it might be a solution. But historians of science argue that debates

about vitalism served an important role in the development of biology, by forcing

biologists to confront some of the explanatory deficiencies of the models they were

working with – both by developing new models and by developing new experimental

tools. Perhaps mysterianism about the cognitive science of consciousness will have a

similar role to play?

Certainly, that would be consistent with how cognitive science has evolved up to now.

Many of the advances that we have explored have emerged in response to challenges that

on the face of things are no less dramatic than the challenges posed by those who think

that consciousness is scientifically inexplicable – the challenge to show how a machine can

solve problems, for example; to show how neural networks can learn; or to show how

systems can engage in sophisticated emergent behaviors without explicit information

processing.

In any event, consciousness is one of the most active and exciting topics in contempor-

ary cognitive science. Whether it will ultimately reveal the limits of cognitive scientific

explanation or not, it continues to generate an enormous range of innovative experiments

and creative theorizing.
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Summary

This chapter began the basic challenge for cognitive science raised by the apparent conflict first-

and third-person approaches to consciousness, as presented in Frank Jackson’s knowledge

argument. Despite this challenge, consciousness research has made numerous interesting

discoveries about the way our minds work. We began with results from priming studies and cases

of neurological damage indicating that a great deal of information processing occurs below the

threshold of consciousness. Further investigation shows, though, that nonconscious information

processing is limited in important ways, and we looked at those limitations to explore the function

of consciousness awareness. Milner and Goodale’s research on the two visual streams, as well as

other related studies, indicate that consciousness is important for planning and initiating actions,

while research on planning suggests the memory retains conscious better than nonconscious

information. After considering objections to the very idea that cognitive science might provide a

complete account of consciousness, we concluded by looking at the global workspace theory of

consciousness, which tied together a number of themes in this chapter and throughout the

book. The global workspace theory shows how unconscious information reaches consciousness

as well as how modular information is transmitted throughout the brain for use in high-level

cognition.

Checklist

The Challenge of Consciousness

(1) We can take either a first-person or a third-person approach to consciousness.

(2) Jackson’s Knowledge Argument illustrates the contrast between the first-person and third-person

approaches to consciousness.

(3) According to the Knowledge Argument, a color blind scientist who knew every (third-person)

scientific fact about consciousness would still lack a crucial piece of knowledge – first-person

knowledge of what it is like to see color

(4) The contrast between the first- and third-person approaches points to the potential inadequacy of

cognitive science for studying consciousness.

Information Processing without Conscious Awareness

(1) There are two primary ways of understanding unconscious information processing: priming

experiments and studies of patients with neurological damage.

(2) Semantic priming studies show that basic categorization can be accomplished unconsciously. Since

semantic categorization is generally thought to be nonmodular, these tasks also suggest that there

can be nonmodular unconscious processing.

(3) Blindsight and unilateral neglect indicate that high-level processing can be applied even to areas of

the visual field that, due to damage, are not consciously perceived.

The Function of Consciousness

(1) Milner and Goodale’s research reveals a basic functional distinction in the visual system: vision for

perception and vision for action. The ventral visual stream is for perception and high-level action-
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planning and is conscious, while the dorsal visual stream is for online control of action and is

unconscious.

(2) Experiments on the Ebbinghaus illusion and interocular suppression provide support for Milner and

Goodale’s dual stream hypothesis.

(3) Milner and Goodale’s research indicates that consciousness is functionally important for planning

and initiating action.

(4) Priming studies show that consciously perceived primes are retained better and have greater

impact on other cognitive processes.

The Hard Problem of Consciousness

(1) Ned Block’s distinction between access consciousness (or A-consciousness) and phenomenal

consciousness (or P-consciousness) can be used to generate a dilemma for the cognitive science of

consciousness: cognitive science seems to be informative only for understanding A-consciousness.

(2) Block claims that there is a double dissociation between A- and P-consciousness. This produces an

explanatory gap.

(3) The conflict between A- and P-consciousness can be understood in terms of what David Chalmers

calls the hard problem of consciousness, which Chalmers thinks cannot be solved by cognitive

science.

The Global Workspace Theory of Consciousness

(1) The global workspace theory holds that attention makes low-level modular information available

for conscious control in the “global workspace,” from where the information is then “broadcast”

to other areas of the brain.

(2) The global workspace theory draws from two basic ideas: (a) consciousness permits information to

be explicitly and durably maintained for additional processing and reasoning, and (b)

consciousness is necessary for initiating deliberate action.

(3) Information processing in the global workspace is a type of domain-general process, selecting

among competing modular inputs.

(4) There is some neurological support for the global workspace theory. Pyramidal neurons, for

instance, may be responsible for connecting specialized modular processes and broadcasting their

outputs throughout the brain for other cognitive processes.

Further Reading

There has been an explosion of research on consciousness in the last decade or so, only a small

portion of which can be covered in a single chapter. Good places to start to learn more are the

books by Jesse Prinz 2012 and Timothy Bayne 2012. Though written by philosophers, both books

place heavy emphasis on empirical research, and synthesize a wide range of recent studies of

consciousness. Robert Van Gulick’s chapter in Margolis, Samuels, and Stich 2012 also provides a

good summary of both philosophical and neuroscientific theories of consciousness. Zelazo,

Moscovitch, and Thompson 2007 is another excellent resource. Baars and Gage 2010 discusses a

lot of the most recent research, including figures and descriptions of the most popular methods
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used to study consciousness. Chalmers 2013 outlines what he sees as the principal projects for a

science of consciousness.

Frank Jackson’s Knowledge Argument was first presented in Jackson 1982. His more recent

views can be found in Jackson 2003. A series of essays on the Mary thought experiment can be

found in Ludlow, Nagasawa, and Stoljar 2004. For a related argument (Joseph Levine’s

explanatory gap argument), see Levine 1983.

Prominent accounts of how unconscious information processing operates and how information

becomes conscious include Dehaene et al. 2006 and Kouider et al. 2007. There are many excellent

reviews of research on priming. Kouider and Dehaene 2007 is a good survey of the history of

masked priming. On primes becoming more visible when followed by congruent primes, see

Bernstein et al. 1989. Good resources on bilingual semantic priming are Kiran and Lebel 2007, Kotz

2001, and Schoonbaert et al. 2009. Classic studies of unilateral neglect include Driver and

Mattingly 1998, Driver and Vuilleumier 2001, and Peru et al. 1996. A recent meta-analysis of the

critical lesion locations involved in unilateral neglect can be found in Molenberghs, Sale, and

Mattingley 2012. Corbetta and Shulman 2011 discusses the relation between neglect and

attention. On the function of the parietal cortex in visual perception, see Husain and Nachev 2007.

A summary of the two visual streams can be found in Milner and Goodale 2008. A critique of

the two-stream account (with commentary from Milner, Goodale, and others) can be found in

Schenk and McIntosh 2010. See Milner 2012 for a recent study of the two visual streams and

consciousness. Goodale and Milner 2013 also provides a good review of the visual system. There

are many studies on the Ebbinghaus illusion and the differences between vision for action and

vision for perception. Aglioti, DeSouza, and Goodale 1995 is a classic study. For responses and

follow-up studies, see Glover and Dixon 2001 and Franz et al. 2000.

The literature on access consciousness and phenomenal consciousness is quite large now. Block

1995b is the classic article on the topic. Block’s more recent views can be found in Block 2007,

where he proposes different neural structures underlying A- and P-consciousness, and Block 2011,

where he responds to a number of criticisms of his account. The original Sperling experiment can

be found in Sperling 1960. A criticism of Block’s interpretation of the Sperling experiment, as well

as discussion of phenomenal consciousness more generally, can be found in Kouider et al. 2010.

For more on the putative explanatory gap between A- and P-consciousness, see Levine 1983.

Other well-known books on these topics include Carruthers 2000 and Dennett 1991. For classic

formulations of the hard problem and easy problems of consciousness, see Chalmers 1995, 1996.

For early formulations of the global workspace theory of consciousness, see Baars 1988, 2002.

An influential discussion of the theory is Dehaene and Naccache 2001. A summary of the theory

can be found in Dehaene and Changeux 2011, including responses to critics. See also Dehaene

et al. 2014.

Two popular topics in consciousness research that have been mentioned only briefly but that

have their own burgeoning literatures are attention, which was discussed in Chapter 9, and the

neural correlates of consciousness. Posner 1980 is a classic early study on attention and

consciousness. It was the first to convincingly demonstrate that gaze can be fixed while attention

wanders. Lamme 2003 provides a concise summary of the reasons for separating attention from

consciousness. Lavie 2005 is an influential account of how unattended stimuli are processed. Mack
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and Rock 1998 discusses a series of now-classic experiments on what is called inattentional

blindness. Simons and Chabris 1999 is another classic series of studies in this area. These

experiments rely on selective looking, where people’s selective attention alters what they see in a

visual array. See Simons and Rensink 2005 for a review of these studies. Other reviews of how

attention relates to consciousness can be found in Koch and Tsuchiya 2007, Martens and Wyble

2010, Van den Bussche et al. 2010, and Raffone et al. 2014.

Many trace the most recent wave of research into the neural correlates of consciousness (NCC)

to Baars 1988 and Koch 2004. The global workspace theory is one prominent account of the NCC.

An influential idea utilized by global workspace theorists is that of neural synchrony. This idea,

popularized by Singer 1999, holds that groups of neurons must fire in sync in order to produce

consciousness. Womelsdorf et al. 2007 is a more recent paper on this phenomenon. Crick and

Koch 2003 is a widely cited review of different problems with the search for NCC, including

arguments against the importance of neural synchrony for consciousness. An increasingly popular

tool for identifying the NCC is to track brain activation in patients during and after being in a

vegetative state. Steven Laureys’s studies are some of the best known. Laureys 2005 is an

influential article describing the various brain areas that appear to be deactivated as a result of

being in a vegetative state. Owen et al. 2006 and Hohwy 2009 are other important articles. Good

reviews on the search for the NCC include Metzinger 2000, Lamme 2006, Tononi and Koch 2008,

and Koch et al. 2016.
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Overview

This chapter focuses on robotics. We start by setting the scene with a classic example of GOFAI

robotics – GOFAI stands for good old-fashioned artificial intelligence. The focus for the remainder

of the chapter is the situated cognition movement in robotics. Like the dynamical systems theorists

discussed in Chapter 6, situated cognition theorists are dissatisfied with traditional ways of

thinking about information processing in cognitive science. They have developed a powerful tool

kit of alternatives and used them to construct new types of robot.

Section 16.1 reviews one of the historic achievements of early robotics, which is also an

excellent illustration of the physical symbol system hypothesis in action. This is SHAKEY, a mobile

robot developed at the Artificial Intelligence Center at SRI (Stanford Research Institute). SHAKEY

was designed to operate and perform simple tasks in a real, physical environment. The programs

built into it permitted SHAKEY to plan ahead and to learn how to perform tasks better.
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Section 16.2 brings out some of the complaints that situated cognition theorists level at

traditional GOFAI robotics, and illustrates some of the engineering inspiration that these theorists

have drawn from studying very simple cognitive systems such as insects.

Section 16.3 explores how these theoretical ideas have been translated into particular robotic

architectures, focusing on the subsumption architectures developed by Rodney Brooks, and at

examples of what Maja Matari±c has termed behavior-based robotics.

16.1 GOFAI Robotics: SHAKEY

In this section we look at a pioneering robot developed in the late 1960s and early 1970s in

the Artificial Intelligence Center at what was then called the Stanford Research Institute (it

is now called SRI International and no longer affiliated to Stanford University). This robot,

affectionately called SHAKEY (because of its jerky movements), was the first robot able to

move around, perceive, follow instructions, and implement complex instructions in a

realistic environment (as opposed to virtual micro-worlds like that “inhabited” by

SHRDLU, which we looked at in Section 2.1). SHAKEY has now retired from active service

and lives in the Robot Hall of Fame at Carnegie Mellon University in Pittsburgh,

Pennsylvania.

Figure 16.1 depicts one of the physical environments in which SHAKEY operated. The

name of each room begins with an “R.” “RMYS” is a mystery room – i.e., SHAKEY has no

information about its contents. Doorway names begin with a “D” and are labeled in a way

that makes clear which rooms they are connecting. “DUNIMYS,” for example, labels the

door between RUNI (where SHAKEY starts) and RMYS. The environment is empty, except

for three boxes located in RCLK (the room with the clock).

In thinking about SHAKEY the first place to start is with the physical structure itself,

which is shown in Figure 16.2. The software that allows SHAKEY to operate is not actually

run on the robot itself. It was run on a completely separate computer system that commu-

nicated by radio with SHAKEY (the radio antenna can be seen in the photo, extending from

the top of the structure).

The programs that run SHAKEY are examples of what is generally called logic program-

ming. They incorporate a basic model of the environment together with a set of procedures

for updating the model and for acting on the environment.

SHAKEY’s basic model is given by a set of statements in the first-order predicate calculus.

(The first-order predicate calculus is the logical language that allows us to talk about

particular objects having particular properties, and also permits us to formulate generaliza-

tions either about all objects or about at least one object.) These statements are in a basic

vocabulary that contains names for the objects in the robot’s world – doors, blocks, walls,

and so on – as well as predicates that characterize the properties those objects can have. The

vocabulary also contains a name for SHAKEY and predicates that describe the robot’s state –

where it is, the angle at which its head is tilted, and so on. The software that SHAKEY uses

to plan and execute its actions exploits this same vocabulary, supplemented by terms for

particular actions.
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SHAKEY’s Software I: Low-Level Activities and
Intermediate-Level Actions

To understand SHAKEY’s software we need to go back to Chapter 1, where we looked at

Lashley’s influential (and at the time very innovative) ideas about the hierarchical organiza-

tion of behavior. Reacting against the behaviorist idea that actions could be viewed as linked

chains of responses, Lashley argued that many complex behaviors resulted from prior

planning and organization. These behaviors are organized hierarchically (rather than lin-

early). An overall plan (say, walking over to the table to pick up the glass) is implemented by

simpler plans (the walking plan and the reaching plan), each of which can be broken down

into simpler plans, and so on. Ultimately, we arrive at basic actions that don’t require any

planning. These basic actions are the components from which complex behaviors are built.

SHAKEY’s software packages are built around this basic idea that complex behaviors are

hierarchically organized. We can see how this works in Table 16.1, which shows how we

can think about SHAKEY as a system with five different levels. The bottom level is the

hardware level, and there are four different levels of software. The software levels are

10
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Figure 16.1 A map of SHAKEY’s physical environment. Each room has a name. The room

containing the boxes is called RCLK (an abbreviation for “Room with Clock”). The total

environment measures about 60 feet by 40 feet. (Adapted From Nilsson 1984)
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hierarchically organized. Each level of software controls a different type of behavior. Going

up the hierarchy of software takes us up the hierarchy of behavior.

The interface between the physical hardware of the robot and the software that allows it

to act in a systematic and planned way is at the level of low-level actions (LLAs). The LLAs are

SHAKEY’s basic behaviors – the building blocks from which everything that it does is

constructed. The LLAs exploit the robot’s basic physical capabilities. So, for example, SHA-

KEY can move around its environment by rolling forward or backward. It can take photos

with the onboard camera and it can move its head in two planes – tilting it up and down, and

panning it from side to side. There are LLAs corresponding to all of these abilities.

Figure 16.2 A photograph of SHAKEY the robot. (Photograph by Ralph Crane/The LIFE Picture

Collection/Getty Images)
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SHAKEY’s model of its environment also represents the robot’s own state. Of course,

executing an LLA changes the robot’s state and so requires the model to be updated.

Table 16.2 shows the relation between the LLAs that SHAKEY can perform and the way

in which it represents its own state.

So, the LLAs fix SHAKEY’s basic repertoire of movements. In themselves, however, LLAs

are not much use for problem solving and acting. SHAKEY’s designers needed to build a

bridge between high-level commands (such as the command to fetch a block from a

particular room) and the basic movements that SHAKEY can use to carry out that com-

mand. The first level of organization above LLAs comes with Intermediate-Level Actions

(ILAs). The ILAs are essentially action routines – linked sequences of LLAs that SHAKEY can

call upon in order to execute specific jobs, such as navigating to another room, or turning

toward a goal. Table 16.3 shows some ILAs.

ILAs are not just chains of LLAs (in the way that behaviorists thought that complex

actions are chained sequences of basic responses). They can recruit other ILAs. So, for

TABLE 16.1 SHAKEY’S five levels

LEVEL FUNCTION EXAMPLES

1 Robot vehicle and

connections to user

programs

To navigate and interact physically with

a realistic environment

See the photograph of SHAKEY in

Figure 16.2

2 Low-level actions

(LLAs)

To give the basic physical capabilities of

the robot

ROLL (which tells the robot to move

forward by a specified number of feet)

and TILT (which tells the robot to tilt its

head upward by a specified number of

degrees)

3 Intermediate-level

actions (ILAs)

Packages of LLAs PUSH (OBJECT, GOAL, TOL) which

instructs the robot to push a particular

object to a specified goal, with a

specified degree of tolerance

4 STRIPS A planning mechanism constructing

MACROPS (sequences of ILAs) to carry

out specific tasks

A typical MACROP might be to fetch a

block from an adjacent room

5 PLANEX Executive program that calls up and

monitors individual MACROPS

PLANEX might use the sensors built into

the robot to determine that the block

can only be fetched if SHAKEY pushes

another block out of the way first – and

then invoke a MACROP to fetch a block
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example, the GETTO action routine takes SHAKEY to a specific room. This action routine

calls upon the NAVTO routine for navigating around in the room SHAKEY is currently in,

as well as the GOTOROOM routine, which takes SHAKEY to the room it is aiming for. Of

course, SHAKEY can only move from any room to an adjacent room. And so the GOTO-

ROOM routine is built up from the GOTOADJROOM routine.

SHAKEY’s hierarchical organization is very clear even at the level of ILAs. But in order to

appreciate it fullywe need to look at the next level up.Nothing thatwe have seen so far counts

as planning. Both LLAs and ILAs allow SHAKEY to implement fairly low-level commands. But

there is little here that would properly be described as problem solving – or indeed, to go back

to Newell and Simon’s physical symbol system hypothesis, as intelligent action.

TABLE 16.2 How SHAKEY represents its own state

ATOM IN AXIOMATIC MODEL AFFECTED BY

(AT ROBOT xfeet yfeet) ROLL

(DAT ROBOT dxfeet dyfeet) ROLL

(THETA ROBOT degreesleftofy) TURN

(DTHETA ROBOT dthetadegrees) TURN

(WHISKERS ROBOT whiskerword) ROLL, TURN

(OVRID ROBOT overrides) OVRID

(TILT ROBOT degreesup) TILT

(DTILT ROBOT ddegreesup) TILT

(PAN ROBOT degreesleft) PAN

(DPAN ROBOT ddegreesleft) PAN

(IRIS ROBOT evs) IRIS

(DIRIS ROBOT devs) IRIS

(FOCUS ROBOT feet) FOCUS

(DFOCUS ROBOT dfeet) FOCUS

(RANGE ROBOT feet) RANGE

(TVMODE ROBOT tvmode) TVMODE

(PICTURESTAKEN ROBOT Æ picturestaken) SHOOT
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SHAKEY’s Software II: Logic Programming
in STRIPS and PLANEX

The real innovation in SHAKEY’s programming came with the STRIPS planner (“STRIPS” is

an acronym for “Stanford Research Institute Problem Solver”). The STRIPS planner (which,

as it happens, was fairly closely related to Newell and Simon’s General Problem Solver

[GPS]) allows SHAKEY to do things that look much more like reasoning about its environ-

ment and its own possibilities for action. What STRIPS does is translate a particular goal

statement into a sequence of ILAs.

As we have seen, SHAKEY has an axiomatic model of its environment. The axioms are

well-formed formulas in the predicate calculus, built up from a basic vocabulary for

describing SHAKEY and its environment. These formulas describe both SHAKEY’s physical

TABLE 16.3 SHAKEY’s intermediate-level routines

ILA ROUTINES CALLED COMMENTS

PUSH3 PLANOBMOVE*, PUSH2 Can plan and execute a series of PUSH2s

PUSH2 PICLOC*, OBLOC*, NAVTO, ROLLBUMP,

PUSH1

Check if object being pushed slips off

PUSH1 ROLL* Basic push routine; assumes clear path

GETTO GOTOROOM, NAVTO Highest-level go-to routine

GOTOROOM PLANTOUR*, GOTOADJROOM Can plan and execute a series of

GOTOADJROOMs

GOTOADJROOM DOORPIC*, ALIGN, NAVTO, BUMBLETHRU Tailored for going through doorways

NAVTO PLANJOURNEY*, GOTO1 Can plan and execute a trip within one room

GOTO1 CLEARPATH*, PICDETECTOB*, GOTO Recovers from errors due to unknown objects

GOTO PICLOC*, POINT, ROLL2 Executes single straight-line trip

POINT PICTHETA*, TURN2 Orients robot toward goal

TURN2 TURNBACK*, TURN1 Responds to unexpected bumps

TURN1 TURN* Basic turn routine; expects no bumps

ROLL2 ROLLBACK*, ROLL1 Responds to unexpected bumps

ROLL1 ROLL* Basic roll routine that expects no bumps

ROLLBUMP ROLLBACK*, ROLL1 Basic roll routine that expects a terminal bump
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environment and its own state. The model is updated as SHAKEY moves around and acts

upon the environment.

The tasks that SHAKEY is given are also presented as formulas in the predicate calculus.

The predicate calculus is a tool for deduction and what SHAKEY does, in essence, is to come

up with a deduction that has its goal as its conclusion.

We can think about SHAKEY’s planning process as involving a tree search. (Think back

to the decision trees that we looked at in Section 12.1.) The first node (the top of the tree) is

SHAKEY’s model of the current environment. Each branch of the tree is a sequence of ILAs.

Each node of the tree is an updated model of the environment.

If the goal formula can be deduced from the updated model at a given node, then STRIPS

has solved the problem. What it then does is instruct SHAKEY to follow the sequence of

ILAs described in the branch that leads to the solution node. SHAKEY does this, updating

its model of the environment as it goes along.

There is no guarantee that this will always get SHAKEY to where it wants to go. The goal

might not be attainable. Its model of the environment might not be correct. Someone

might have moved the block without telling SHAKEY (and in fact researchers at SRI did do

precisely that to see how SHAKEY would update its model). This is where the PLANEX level

comes into play. The job of the PLANEX software is to monitor the execution of the plan.

So, for example, PLANEX contains an algorithm for calculating the likely degree of error at

a certain stage in implementing the task (on the plausible assumption that executing each

ILA would introduce a degree of “noise” into SHAKEY’s model of the environment). When

the likely degree of error reaches a certain threshold, PLANEX instructs SHAKEY to take a

photograph to check on its position. If a significant error is discovered, then PLANEX

makes corresponding adjustments to the plan.

We can see, then, how SHAKEY is a great example of the physical symbol system

hypothesis in action. The physical symbol structures are well-formed formulas in the

predicate calculus. These symbols give SHAKEY’s model of the environment, as well as

the goals and subgoals that SHAKEY is trying to achieve. And the physical symbol struc-

tures are manipulated and transformed by the STRIPS and PLANEX algorithms

Moreover, SHAKEY clearly illustrates the heuristic search hypothesis, also discussed in

Chapter 4. The hypothesis says that intelligent problem solving takes place by transform-

ing and manipulating symbol structures until a solution structure is reached. The starting

point is given by SHAKEY’s model of the environment, together with the target formula

that represents the desired end-state. The permissible transformations are given by the

STRIPS and PLANEX algorithms. And it is easy to see what the solution structure is. The

problem is solved when the initial symbol structure has been transformed into a symbol

structure from which the target formula can be deduced.

16.2 Situated Cognition and Biorobotics

With the classic example of SHAKEY clearly in view, we turn now to criticisms of GOFAI

robotics and the alternative approaches that have been developed.
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We’ll start with the situated cognition movement. This is in many ways similar to the

dynamical systems approach,whichwediscussed inChapter6.Cognitive scientists influenced

bydynamical systems theorypropose anewwayof analyzing andpredicting cognitive systems

as coupled systems, focusing onvariables evolving through state space in real time, rather than

representations. Insteadof abstracting away fromthephysical details of howcognitive systems

actually work, they suggest that those physical details can play all sorts of unsuspected but

vitally important roles in determining how a cognitive system changes and evolves over time.

Situated cognition theorists propose a broadly similar approach to robotics, moving

away from the disembodied approach that we find in SHAKEY (with a sharp distinction

between hardware and software) toward design principles that exploit and leverage the

robot’s physical properties, as well as its embeddedness in real-life environment and its

need to operate in real time.

The Challenge of Building a Situated Agent

The principal objection that situated cognition theorists make to traditional cognitive

science is that it has never really come to terms with the real-life problems and challenges

in understanding cognition. This problem is particularly acute for the GOFAI approach to

building artificial agents.

SHAKEY, which we have just looked at, is a classic example of GOFAI robotics. So too is

Terry Winograd’s SHRDLU program for natural language understanding, which we looked

at in Section 2.1. SHRDLU is a virtual robot, reporting on and interacting with a virtual

micro-world. A good entry point for the worries that situated cognition theorists have

about GOFAI is via a criticism often leveled at SHRDLU and other micro-world programs.

The basic complaint is that SHRDLU only works because its artificial micro-world envir-

onment has been stripped of all complexity and challenge. Here is a witty expression of the

worry from the philosopher and cognitive scientist John Haugeland (although he is not

himself a promoter of the situated cognition movement):

SHRDLU performs so glibly only because his domain has been stripped of anything that

could ever require genuine wit or understanding. Neglecting the tangled intricacies of

everyday life while pursuing a theory of common sense is not like ignoring friction while

pursuing the laws of motion; it’s like throwing the baby out with the bathwater. A round

frictionless wheel is a good approximation of a real wheel because the deviations are

comparatively small and theoretically localized: the blocks-world “approximates” a

playroom more as a paper plane approximates a duck.

(Haugeland 1985: 190)

Onemight wonder whether Haugeland is being completely fair here. After all,Winograd did

not really set out to provide “a theory of common sense,” and there probably are situations

in which a paper plane is a useful approximation of a duck. But the basic point is clear

enough. There are many challenges that SHRDLU simply does not have to deal with.

SHRDLU does not have to work out what a block is, for example – or how to recognize

one. There is very little “physical” challenge involved in SHRDLU’s (virtual) interactions
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with its micro-world environment, since SHRDLU has built into it programs for picking up

blocks and moving them around, and the robot hand is expressly designed for implement-

ing those programs. Likewise, SHRDLU’s language-understanding achievements are partly

a function of its artificially limited language and the highly circumscribed conversational

context. The major problems in language understanding (such as decoding ambiguity and

working out what a speaker is really trying to say) are all factored out of the equation.

Finally, SHRDLU is not autonomous – it is a purely reactive system, with everything it does

a response to explicit instructions.

In other words, SHRDLU is not properly situated in its environment – or rather, the way

in which SHRDLU is situated in its environment is so radically different from how we and

other real-life cognitive agents are embedded in our environments that we can learn

nothing from SHRDLU about how our own cognitive systems work. In fact (the argument

continues), SHRDLU’s environment is so constrained and devoid of meaning that it is

positively misleading to take it as a starting point in thinking about human cognition. The

call for situated cognition, then, is a call for AI to work on systems that have all the things

that SHRDLU lacks – systems that are properly embodied and have real autonomy. These

systems need to be embedded in something much more like the real world, with ambigu-

ous, unpredictable, and highly complex social and physical contexts.

The researchers who designed and built SHAKEY may have thought that they were

programming something much closer to an embodied and autonomous agent. After all,

SHAKEY can navigate the environment, and it is designed to solve problems, rather than to

be purely reactive. But, from the perspective of situated cognition theorists, SHAKEY is

really no better than SHRDLU.

For situated cognition theorists, SHAKEY is not really a situated agent, even though it

propels itself around a physical environment. The point for them is that the real work has

already been done in writing SHAKEY’s program. SHAKEY’s world is already defined for it

in terms of a small number of basic concepts (such as BOX, DOOR, and so forth). Its motor

repertoire is built up out of a small number of primitive movements (such as ROLL, TILT,

PAN). The problems that SHAKEY is asked to solve are presented in terms of these basic

concepts and primitive movements (as when SHAKEY is asked to fetch a BOX).

The robot has to work out a sequence of basic movements that will fulfill the command,

but that is not the same as a real agent solving a problem in the real world. SHAKEY already

has the basic building blocks for the solution. But working out what the building blocks are

is perhaps the most difficult part of real-world problem solving. Like SHRDLU, SHAKEY can

only operate successfully in a highly constrained environment. Situated cognition theorists

are interested in building agents that will be able to operate successfully even when all

those constraints are lifted.

Situated Cognition and Knowledge Representation

Rodney Brooks is a very influential situated cognition theorist, whose paper “Intelligence

without representation” is something of a manifesto for situated cognition theorists.

Brooks has an interesting diagnosis of where traditional AI has gone wrong.
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Brooks points out that classical AI depends crucially on trimming down the type and

number of details that a cognitive system has to represent. Here is his example in his own

words:

Consider chairs, for example. While these two characterizations are true

(CAN (SIT-ON PERSON CHAIR))

and

(CAN (STAND-ON PERSON CHAIR))

there is really muchmore to the concept of a chair. Chairs have some flat (maybe) sitting

place, with perhaps a back support. They have a range of possible sizes, and a range of

possibilities in shape. They often have some sort of covering material – unless they are

made of wood, metal or plastic. They sometimes are soft in particular places. They can

come from a range of possible styles. In sum, the concept of what a chair is is hard to

characterize simply. There is certainly no AI vision program that can find arbitrary chairs

in arbitrary images; they can at best find one particular type of chair in arbitrarily

selected images.

(Brooks 1991: 399)

Recognizing and interacting with chairs is a complicated business. But the programmer can

remove the complications more or less at a stroke – simply by programming into the

system a very narrow characterization of what a chair is. The beauty of doing this is that

it can make certain types of chair interactions very simple.

If, to continue with Brooks’s example, the system has to solve a problem with a hungry

person seated on a chair in a room with a banana just out of reach, then the characteriza-

tion in the program is just what’s required. But of course, if the system solves the problem,

then this is largely because it has been given all and only the right sort of information

about chairs – and because the problem has been presented in a way that points directly to

a solution! Here is Brooks again:

Such problems are never posed to AI systems by showing them a photo of the scene.

A person (even a young person) can make the right interpretation of the photo and

suggest a plan of action. For AI planning systems, however, the experimenter is required

to abstract away most of the details to form a simple description of atomic concepts such

as PERSON, CHAIR, and BANANA.

But this abstraction process is the essence of intelligence and the hard part of the

problem being solved. Under the current scheme, the abstraction is done by the

researchers, leaving little for the AI programs to do but search. A truly intelligent

program would study the photograph, perform the abstraction itself, and solve the

problem.

(Brooks 1991: 399)
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This gives us a much clearer view of what situated cognition is supposed to be all about. It’s

not just a question of designing robots that interact with their environments. There are

plenty of ways of doing this that don’t count as situated cognition. The basic idea is to

develop AI systems and to build robots that don’t have the solutions to problems built into

them – AI systems and robots that can learn to perform the basic sensory and motor

processes that are a necessary precondition for intelligent problem solving.

Biorobotics: Insects and Morphological Computation

Situated cognition theorists, like dynamical systems theorists, believe that it pays to start

small. Dynamical systems theorists often focus on relatively simple motor and cognitive

behaviors, such as infant stepping and the A-not-B error. Cognitive scientists in situated

robotics are often inspired by cognitively unsophisticated organisms. Insects are very

popular. We can get the flavor from the title of another one of Rodney Brooks’s influential

articles – “Today the earwig, tomorrow man?”

Instead of trying to model highly simplified and scaled-down versions of “high-level”

cognitive and motor abilities, situated cognition theorists think that we need to focus on

much more basic and ecologically valid problems. The key is simplicity without simplification.

Insects solve very complex problems. Studying how they do this, and then building

models that exploit the same basic design principles will, according to theorists such as

Brooks, pay dividends when it comes to understanding how human beings interact with

their environment. We need to look at humans as scaled-up insects, not as scaled-down

supercomputers.

One of the basic design principles stressed by situated cognition theorists is that there

are direct links between perception and action. This is an alternative to the classical

cognitive science view of thinking about organisms in terms of distinct and

semi-autonomous subsystems that can be analyzed and modeled independently of each

other. On a view like Marr’s, for example, the visual system is an autonomous input–

output system. It processes information completely independently of what will happen

to that information further downstream. When we look at insects, however, we see

that they achieve high degrees of “natural intelligence” through clever engineering solu-

tions that exploit direct connections between their sensory receptors and their

effector limbs.

Some researchers in this field have described what they are doing as biorobotics. The basic

idea is usefully summarized in Figure 16.3. Biorobotics is the enterprise of designing and

building models of biological organisms that reflect the basic design principles built into

those organisms.

Bioroboticists look to biology for insights into how insects and other simple organisms

solve adaptive problems, typically to do with locomotion and foraging. They start with

theoretical models. They then modify those models after seeing what happens when they

are physically implemented in robots – robots whose construction is itself biologically

inspired.
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A famous example of biorobotics in action is the work of Edinburgh University’s Barbara

Webb on how female crickets locate males on the basis of their songs – what biologists call

cricket phonotaxis.

Female crickets are extremely good at recognizing and locating mates on the basis of the

song that they make. On the face of it this might seem a problem that can only be solved

with very complex information processing – identifying the sound, working out where it

comes from, and then forming motor commands that will take the cricket to the right

place. Webb observed, however, that the physiology of the cricket actually provides a very

clever solution, exploiting direct links between perception and action.

A remarkable fact about crickets is that they have their ears on their legs. As shown in

Figure 16.4, the cricket’s ears are connected by a tube (the tracheal tube). This means that a

single sound can reach each ear via different routes – a direct route (through the ear itself )

and various indirect routes (via the other ear, as well as through openings in the tracheal

tube known as spiracles). Obviously, a sound that takes the indirect route will take longer

to arrive, since it has further to travel – and can’t go faster than the speed of sound.

According to Barbara Webb, cricket phonotaxis works because of two very basic design

features of the anatomy of the cricket. First, vibration is highest at the ear nearest the source

of the sound. This provides a direct indication of the source of the sound. The second is

that this vibration directly controls the cricket’s movements. Crickets are hard-wired to

move in the direction of the ear with the highest vibration (provided that the vibration is

suitably cricket-like). There is no “direction-calculating mechanism,” no “male cricket

identification mechanism,” and no “motor controller.”

Biorobotics

Biology

Applications
Artificial

intelligence

Figure 16.3 The organizing principles of biorobotics – a highly interdisciplinary enterprise.
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Webb and her co-workers have used this model to build robot crickets that can actually

perform a version of phonotaxis. In fact, not only can they find the sources of artificial

cricket sounds, but they can even find real crickets by their sound.

One of the key design features of Webb’s robot cricket (reflecting how real crickets have

evolved) is that the cricket’s body is a contributing factor in the computation. Cricket

phonotaxis works by comparing two different signals. The availability of these two differ-

ent signals is a direct function of the cricket’s bodily layout, as illustrated in Figure 16.4.

This can be seen as an early example of what subsequently emerged as the morphological

computationmovement in robotics.

Morphology (in this context) is body shape. The basic idea behind morphological

computation is that organisms can exploit features of body shape to simplify what might

otherwise be highly complex information-processing tasks. Applying this idea to robotics

means building as much of the computation as possible directly into the physical structure

of the robot. In essence, morphological computation is a research program for designing

robots in which as much computation as possible is done for free.

The morphological computation movement is a very recent development. The first

morphological computation conference was only held in 2005. But there have already

been some very interesting developments. Here are two examples from the AI Lab in the

Department of Informatics at the University of Zurich.

The first example is a fish called WANDA, illustrated in Figure 16.5. WANDA is designed

with only one degree of freedom. The only thing WANDA can do is wiggle its tail from side

to side at varying amplitudes and frequencies – i.e., WANDA can vary the speed and the

degree with which its tail moves. And yet, due to the power of morphological computation,

variation in tail wiggling allowsWANDA to carry out the full range offish movements in all

three planes – up–down and left–right as well as forward.

Part of the trick here is WANDA’s buoyancy, which is set so that slow tail wiggling will

make it sink, while fast tail wiggling will make it rise. The other key design feature is the

Sound from
left side

Spiracles

Right tympanum: 
sound in phase

Left tympanum: sound 
out of phase

Figure 16.4 The cricket’s ears are on its front legs. They are connected to each other via a

tracheal tube. The spiracles are small openings that allow air into the tracheal tube. The arrows

show the different routes that a single sound can take to each ear. (Adapted from Clark 2001)
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possibility of adjusting the zero point of the wiggle movement, which allows for move-

ment to the left or right. Figure 16.6 shows WANDA swimming upward.

A second example of morphological computation also comes from the realm of motor

control. (We can think of both examples as ways of counterbalancing the appeal of the

computational approach to motor control, which as we saw in Chapter 6 is also a target for

dynamical systems theorists) The robot hand devised by Hiroshi Yokoi in Figure 16.7 is

designed to avoid the need for making explicit computations in carrying out grasping

movements.

On the computational approach, grasping an object requires computing an object’s

shape and configuring the hand to conform to that shape. Configuring the hand, in turn,

requires sending a set of detailed instructions to the tendons and muscles determining the

position of the fingers and palm. None of this is necessary, however, in controlling the

Yokoi hand.

The hand is constructed from elastic and deformable materials (elastic tendons and

deformable fingertips and spaces between the fingers). This morphology does the work

that would otherwise be done by complex calculations within some sort of motor control

Figure 16.5 A robot fish called WANDA. All that WANDA can do is wiggle its tail fin. Yet, in an

illustration of morphological computation, WANDA is able to swim upward, downward, and from

side to side.
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Figure 16.6 WANDA swimming upward. (From Pfeifer, Iida, and Gómez 2006)

Figure 16.7 Another example of morphological computation: the robot hand designed by Hiroshi

Yokoi. The hand is partly built from elastic, flexible, and deformable materials. The tendons are

elastic, and both the fingertips and the space between the fingers are deformable. This allows the

hand to adapt its grasp to the object being grasped.
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unit. What happens is that the hand’s flexible and elastic morphology allows it to adapt

itself to the shape of the objects being grasped. We see how this works in Figure 16.8.

As with the robot cricket example, most work in morphological computation has

focused on the realm of motor control and sensorimotor integration. These are areas where

traditional AI, and indeed traditional cognitive science, have often been thought to be

deficient. These are not cognitive tasks in any high-level sense. But they are often thought

to require information processing, which is why they come into the sphere of cognitive

science.

The real question, though, must be how the type of insights that we can find in

biorobotics and morphological computation can be integrated into models of more com-

plex agents. Some very suggestive ideas come from the field of behavior-based robotics, to

which we turn in the next section.

16.3 From Subsumption Architectures to
Behavior-Based Robotics

Rodney Brooks has provided a general AI framework for thinking about some of the agents

discussed in the previous section. Webb’s robot crickets are examples of what Brooks calls

subsumption architectures.

Subsumption architectures are organized very differently from the modular architec-

tures that we’ve been focusing on so far (see Chapter 8, for example) and that are exempli-

fied in SHAKEY. Subsumption architectures are made up of layers and the layers are built up

from behaviors.

The bottom level of the architecture is composed of very simple behaviors. Brooks’s

favorite example is obstacle avoidance, which is obviously very important for mobile

robots (and living organisms). The obstacle-avoidance layer directly connects perception

(sensing an obstacle) to action (either swerving to avoid the obstacle, or halting where the

obstacle is too big to go around).

Whatever other layers are built into the subsumption architecture, the obstacle-

avoidance layer is always online and functioning. This illustrates another basic principle

Figure 16.8 The Yokoi hand grasping two very different objects. In each case, the control is the

same, but the morphology of the hand allows it to adapt to the shapes it encounters. (From Pfeifer,

Iida, and Gómez 2006)
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of subsumption architectures. The layers are autonomous and work in parallel. There may

be a “higher” layer that, for example, directs the robot toward a food source. But the

obstacle-avoidance layer will still come into play whenever the robot finds itself on a

collision course with an obstacle. This explains the name “subsumption architecture” –

the higher layers subsume the lower layers, but they do not replace or override them.

This makes it easier to design creatures with subsumption architectures. The different

layers can be grafted on one by one. Each layer can be exhaustively debugged before

another layer is added. And the fact that the layers are autonomous means that there is

much less chance that adding a higher layer will introduce unsuspected problems into the

lower layers. This is obviously an attractive model for roboticists. It is also explicitly based

on thinking about how evolution works.

Subsumption Architectures: The Example of Allen

Rodney Brooks’s lab at MIT has produced many robots with subsumption architectures

exemplifying these general principles. One of the first was Allen, illustrated in Figure 16.9.

At the hardware level, Allen looks like any GOFAI robot, not very dissimilar to SHAKEY

for example. At the software level, though, Allen is a subsumption architecture, built up in

Figure 16.9 Rodney Brooks’s robot Allen, his first subsumption architecture robot. (From Brooks

1991)

424 From GOFAI to Situated Cognition & Behavior-Based Robotics



the standard layered manner. Over time, more and more layers were added to Allen’s basic

architecture. The first three layers are depicted in Figure 16.10.

The most basic layer is the obstacle-avoidance layer. The diagram shows that this layer is

itself built up from a number of distinct subsystems. These do pretty much what their

names suggest. The COLLIDE subsystem scans the sensory input for obstacles. It sends out

a halt signal if it detects one. At the same time the FEELFORCE system works out the overall

force acting upon the robot (using information from the sensors and the assumption that

objects function as repulsive forces). These feed into systems responsible for steering the

robot – systems that are directly connected to the motor effectors.

The wander and explorer layers are constructed in the same way. In the middle layer the

WANDER component generates random paths for Allen’s motor system, while the AVOID

component feeds back down into the obstacle-avoidance layer to ensure that following the

Whenlook

Wander

Sonar Collide Forward

Feelforce Runaway Turn

Look Pathplan Status

Stereo Integrate
in from
sensors

in from
sensors

out to
motors
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startlook
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busy

travel

heading

heading

heading

20

sup

Figure 16.10 The layers of Allen’s subsumption architecture. Allen has a three-layer architecture.

The layers communicate through mechanisms of inhibition (inh) and suppression (sup). (From

Brooks 1991)
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random path does not lead Allen to crash into anything. Allen is actually pretty successful

at this. The robot can successfully navigate environments with both stationary obstacles

and other moving objects.

But Allen is not just wandering around at random. The subsystems in the top layer (the

explorer layer) work together to allow Allen to pursue goals in a self-directed way. These

subsystems receive input from the sensory systems and allow Allen to plan routes toward

specific visible locations. As the wiring diagram in Figure 16.10 shows, the PATHPLAN

subsystem feeds into the AVOID subsystem. This allows for the plan to be modified as the

robot is actually moving toward the goal.

Drawing all this together, we can identify three basic features of subsumption architec-

tures, as developed by Brooks and other AI researchers:

■ Incremental design: Subsumption architecture robots are built to mimic how evolution

seems to work. New subsystems are grafted on in layers that typically don’t change the

design of the existing subsystems.

■ Semi-autonomous subsystems: The subsystems operate relatively independently of each

other, although some subsystems are set up to override others. The connections between

the subsystems are hard-wired. There is typically no central “controller,” comparable to

STRIPS and PLANEX in SHAKEY

■ Direct perception–action links: Subsumption architectures trade as much as possible on

subsystems that deliver immediate motor responses to sensory input. They are designed

for real-time control of action.

The contrast with traditional AI approaches is sharp. Traditional AI robots such as SHAKEY

are designed in a very top-down way. There is typically a central planner maintaining a

continuously updated model of the world, updated by incorporating information received

through its sensors. The planner uses this model of the world to work out detailed action

plans, which are transmitted to the effectors. The action plans tend to be multistage and

leave little scope for modification.

Proponents of GOFAI robotics are likely to say that the basic features of subsumption

architectures are very good design principles for robots that are intended to be no more

than mechanical insects – basically capable only of moving around the environment and

reacting in simple ways to incoming stimuli. But subsumption architectures are not going

to help us with complex intelligent behavior.

Recall the phrasing of the physical symbol system hypothesis, which we looked at in

detail in Chapter 4 and which is the dominant theoretical framework for GOFAI robotics.

The physical symbol system hypothesis is a hypothesis about the necessary and sufficient

conditions of intelligent action. But how intelligent is Allen, or the robot crickets and

cockroaches that bioroboticists have developed?

Subsumption architectures certainly don’t seem to have any decision-making processes

built into them. Potential conflicts between different layers and between individual sub-

systems within a layer are resolved by precedence relations that are built into the hardware
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of the robot. Conflict resolution is purely mechanical. But what makes a system intelligent,

one might reasonably think, is that it can deal with conflicts that cannot be resolved by

applying independent subsystems in some predetermined order. Subsumption architec-

tures lack intelligence almost by definition.

There are different ways in which a situated cognition theorist might try to respond to

this challenge. One way is to try to combine the two approaches. There are hybrid

architectures that have a subsumption architecture for low-level reactive control, in com-

bination with a more traditional central planner for high-level decision-making. So, for

example, Jonathan Connell, a researcher at IBM’s T. J. Watson Research Center in York-

town Heights, New York, has developed a three-level hybrid architecture that he calls SSS.

It is easy to see where the acronym comes from, when we look at what each of the layers

does. SSS contains

■ a Servo-based layer that controls the robot’s effectors and processes raw sensory data

■ a Subsumption layer that reacts to processed sensory input by configuring the servo-

based layer (as is standard in a subsumption architecture, the different subsystems are

organized in a strict precedence hierarchy)

■ a Symbolic layer that maintains complex maps of the environment and is capable of

formulating plans; the symbolic layer configures the subsumption layer

The hybrid architecture approach abandons some of the basic ideas behind situated

cognition and biorobotics. To return to a phrase used earlier, situated cognition theorists

like to think of sophisticated cognitive systems as scaled-up insects, whereas GOFAI theor-

ists think of them as scaled-down supercomputers. The hybrid architecture approach, as its

name suggests, looks for a middle way – it sets out to build scaled-up insects with scaled-

down supercomputers grafted onto them.

But some situated cognition theorists have tried to meet the challenge without com-

promising on the basic principles of situated cognition. Behavior-based robotics moves

beyond basic subsumption architectures in a way that tries to build on the basic insights

of the situated cognition movement.

Behavior-Based Robotics: TOTO

Behavior-based architectures are designed to be capable of representing the environment

and planning complex actions.

Subsumption architectures (and insects, for that matter) are purely reactive – they are

designed to respond quickly to what is happening around them. These responses are

typically fairly simple – such as changing the robot’s direction, or putting it into reverse

when a collision is anticipated. These responses tend to be explicitly programmed in the

system.

Behavior-based robots, in contrast, are capable of more complex behaviors that need not

be explicitly specified within the system. These are sometimes called emergent behaviors
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(because they emerge from the operation and interaction of lower-level behaviors). The

important thing is that this additional cognitive sophistication is gained without a central

planner that works symbolically.

Behavior-based architectures incorporate some of the basic design features of subsump-

tion architectures. They are typically built up from semi-autonomous subsystems in a way

that mimics the incremental approach that evolution seems to take. They have two key

features, one that they share with subsumption architectures and one that sets them apart:

■ Real-time functioning: Like subsumption architectures, behavior-based architectures are

designed to operate in real time. That is, they make plans on a timescale that interfaces

directly with the robot’s movements through the environment. This contrasts with

symbolic planners and hybrid architectures, where planning is done offline and then needs

to be integrated with the robot’s ongoing behavior.

■ Distributed representations: Behavior-based architectures represent their environments and

use those representations in planning actions. This distinguishes them from most

subsumption architectures. But, unlike symbolic and hybrid architectures, those

representations are not centralized or centrally manipulated. There is no central planning

system that gathers together all the information that the robot has at its disposal.

We can appreciate how these features work by looking at two examples from the work of

Maja Matari±c, one of the pioneers of behavior-based robotics. One of the very interesting

features of Matari±c’s work is how she applies the behavior-based approach to programming

collections of robots. We will look in some detail at an example of multiagent program-

ming. First, though, let’s look briefly at how behavior-based robotics works for single

robots.

A fundamental design feature of behavior-based architectures is the distinction between

reactive rules and behaviors. Subsumption architectures are basically built up from reactive

rules. A reactive rule might, for example, tell the robot to go into reverse when its sensors

detect a looming object. The reactive rules exploit direct perception–action links. They take

inputs from the robot’s sensors and immediately send instructions to the robot’s effectors.

Behaviors, in contrast, are more complex. Matari±c defines a behavior as a control law that

satisfies a set of constraints to achieve and maintain a particular goal. The relevant constraints

come both from the sensed environment (which might include other robots) and from the

robot itself (e.g., its motor abilities).

So, the challenge for behavior-based robotics is to find a way of implementing behaviors

in a mobile agent without incorporating a symbolic, central planner. Matari±c’s robot

TOTO, which she designed and constructed together with Rodney Brooks, illustrates how

this challenge can be met for a very specific navigation behavior. This is the behavior of

finding the shortest route between two points in a given environment.

Matari±c and Brooks were inspired by the abilities of insects such as bees to identify short-

cuts between feeding sites. When bees travel from their hive they are typically capable of

flying directly to a known feeding site without retracing their steps. In some sense they

(and many other insects, foraging animals, and migrating birds) are constructing and
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updating maps of their environment. This is a classic example of an apparently complex

and sophisticated behavior being performed by creatures with very limited computational

power at their disposal – exactly the sort of thing that behavior-based robotics is intended

to model.

TOTO is designed to explore and map its environment (an office-like environment

where the principal landmarks are walls and corridors) so that it can plan and execute

short and efficient paths to previously visited landmarks. TOTO has a three-layer architec-

ture. The first layer comprises a set of reactive rules. These reactive rules allow it to

navigate effectively and without collisions in its environment. The second layer (the

landmark-detector layer) allows TOTO to identify different types of landmark. In the

third layer, information about landmarks is used to construct a distributed map of the

environment. This map is topological, rather than metric. It simply contains information

as to whether or not two landmarks are connected – but not as to how far apart they

are. TOTO uses the topological map to work out in real time the shortest path back to

a previously visited landmark (i.e., the path that goes via the smallest number of

landmarks).

One of TOTO’s key features is that its map is distributed (in line with the emphasis

within behavior-based robotics on distributed representations) and the processing works in

parallel. There is no single data structure representing the environment. Instead, each

landmark is represented by a procedure that categorizes the landmark and fixes its compass

direction.

The landmark procedures are all linked together to form a network. Each node in the

network corresponds to a particular landmark, and if there is a direct path between two

landmarks then there is an edge connecting them in the network. This network is TOTO’s

topological map of the environment. It is distributed because it exists only in the form of

connections between separate landmark procedures.

Behavior-based roboticists do not object to representations per se. They recognize that

any robot capable of acting in complex ways in a complex environment must have some

way of storing and processing information about its environment. Their real objection is to

the idea that this information is stored centrally and processed symbolically.

TOTO constantly expands and updates its network as it moves through the environ-

ment detecting new landmarks. This updating is done by activation spreading through the

network (not dissimilar to a connectionist network). When the robot is at a particular

landmark the node corresponding to that landmark is active. It inhibits the other nodes in

the network (which is basically what allows TOTO to know where it is), at the same time as

spreading positive activation (expectation) to the next node in the direction of travel

(which allows TOTO to work out where it is going).

This distributed map of the environment leaves out a lot of important information

(about distances, for example). But for that very reason it is flexible, robust, and, most

importantly, very quick to update.

Matari±c and Brooks designed an algorithm for TOTO to work out the shortest path

between two nodes on the distributed map. The algorithm works by spreading activation.
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Basically, the active node (which is TOTO’s current location) sends a call signal to the node

representing the target landmark. This call signal gets transmitted systematically through

the network until it arrives at the target node. The algorithm is designed so that the route

that the call signal takes through the network represents the shortest path between the two

landmarks. Then TOTO implements the landmark procedures lying on the route to navi-

gate to the target landmark.

TOTO is a nice example of the key features of behavior-based robotics. TOTO is not

simply a reactive agent, like Barbara Webb’s robot cricket. Nor does it have a central

symbolic planner like Jonathan Connell’s SSS. It is capable of fairly sophisticated naviga-

tion behavior because it has a distributed map of the environment that can be directly

exploited to solve navigational problems. The basic activation-spreading mechanisms used

for creating and updating the map are the very same mechanisms used for identifying the

shortest paths between two landmarks. The mechanisms are somewhat rough-and-ready.

But that is what allows them to be used efficiently in the real-time control of behavior –

which, after all, is what situated cognition is all about.

Multiagent Programming: The Nerd Herd

Multiagent programming is highly demanding computationally, particularly if it incorpor-

ates some sort of centralized planner or controller. A central planner would need to keep

track of all the individual robots, constantly updating the instructions to each one to reflect

the movements of others – as well as the evolution of each robot’s own map of the

environment. The number of degrees of freedom is huge.

The multiagent case presents in a very stark way the fundamental challenges of robotics.

How can one design a system that can reason about its environment without a complete

combinatorial explosion? It is very instructive to see what happens when the challenge is

tackled through the behavior-based approach.

Matari±c built a family of twenty mobile robots – the so-called Nerd Herd, illustrated in

Figure 16.11. Each robot was programmed with a set of basis behaviors. These basis

Figure 16.11 The Nerd Herd, together with the pucks that they can pick up with their grippers.
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behaviors served as the building blocks for more complex emergent behaviors that were not

explicitly programmed into the robots.

Table 16.4 shows the five basis behaviors that Matari±c programmed into the robots in

the Nerd Herd. These behaviors could be combined in two ways. The first way is through

summation. The outputs from two or more behaviors are summed together and channeled

toward the relevant effector (e.g., the wheels of the robot). This works because all of the

behaviors have the same type of output. They all generate velocity vectors, which can

easily be manipulated mathematically. The second combination is through switching.

Switching inhibits all of the behaviors except for one.

Each of these basis behaviors is programmed at the level of the individual robot. None of

the basis behaviors is defined for more than one robot at a time and there is no communi-

cation between robots. What Matari±c found, however, was that combining the basis

behaviors at the level of the individual robots resulted in emergent behaviors at the level

of the group.

So, for example, the Nerd Herd could be made to display flocking behavior by summing

basis behaviors in each individual robot. The group flocked together as a whole if

each robot’s control architecture summed the basis behaviors Disperson, Aggregation,

and Safe-wandering. Adding in Homing allowed the flock to move together toward a

particular goal.

The principal activity of the robots in the Nerd Herd is collecting little pucks. Each robot

has grippers that allow it to pick the pucks up. Matari±c used the control technique of

switching between different basis behaviors in order to generate the complex behavior of

foraging. If the robot doesn’t have a puck then all the basis behaviors are inhibited except

Safe-wandering. If Safe-wandering brings it too close to other robots (and hence to poten-

tial competitors) then the dominant behavior switches to Dispersion. If it has a puck then

the control system switches over to Homing and the robot returns to base.

You may be wondering just how intelligent these complex behaviors really are. It is true

that flocking and foraging are not explicitly programmed into the system. They are

emergent in the sense that they arise from the interaction of basis behaviors. But the

mechanisms of this interaction are themselves programmed into the individual robots

using the combinatorial operators for basis behaviors. They are certainly not emergent in

TABLE 16.4 The five basis behaviors programmed into Matari±c’s Nerd Herd robots

Safe-wandering Ability to move around while avoiding collisions with robots and other objects

Following Ability to move behind another robot retracing its path

Dispersion Ability to maintain a minimum distance from other robots

Aggregation Ability to maintain a maximum distance from other robots

Homing Ability to find a particular region or location
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the sense of being unpredictable. And one might think that at least one index of intelli-

gence in robots or computers more generally is being able to produce behaviors that cannot

simply be predicted from the wiring diagram.

It is significant, therefore, that Matari±c’s behavior-based robots are capable of learning

some of these complex behaviors without having them explicitly programmed. She

showed this with a group of four robots very similar to those in the Nerd Herd. The learning

paradigm she used was reinforcement learning. What are reinforced are the connections

between the states a robot is in and actions it takes.

The complex behavior of foraging is really just a set of condition–behavior pairs – if the

robot is in a certain condition (e.g., lacking a puck) then it yields total control to a single

behavior (e.g., Safe-wandering). So, learning to forage is, in essence, learning these

condition–behavior pairs. This type of learning can be facilitated by giving the robot a

reward when it behaves appropriately in a given condition, thus reinforcing the connec-

tion between condition and behavior.

Matari±c worked with two types of reinforcement – reinforcement at the completion of a

successful behavior, and feedback while the robot is actually executing the behavior.

Despite the complexity of the environment and the ongoing multiagent interactions,

Matari±c found that her four robots successfully learned group foraging strategies in 95 per-

cent of the trials.

Obviously, these are early days for behavior-based robotics. It is a long way from groups

of robots foraging for hockey pucks in a closed environment to anything recognizable as a

human social interaction. But behavior-based robotics does at least give us a concrete

example of how some of the basic insights behind the situated cognition movement can

be carried forward. Perhaps it is time to change Rodney Brooks’s famous slogan: “Yesterday

the earwig. Today the foraging robot. Tomorrow man?”

Summary

After reviewing the classic example of SHAKEY in GOFAI robotics, this chapter focused on new

developments in designing and building artificial agents. After reviewing some of the objections that

situated cognition theorists level at traditional GOFAI we explored how these theorists have been

inspired by very simple cognitive systems such as insects. We then considered how these theoretical

ideas have been translated into particular robotic architectures, focusing on the subsumption

architectures developed by Rodney Brooks and on Maja Matari±c’s behavior-based robotics.

Checklist

The robot SHAKEY is an example of how a physical symbol system can interact with a real

physical environment and reason about how to solve problems.
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(1) SHAKEY has a model of its environment given by a set of sentences in a first-order logical

language. This model is updated as SHAKEY moves around.

(2) SHAKEY’s software is hierarchically organized into four different levels. At the most basic level are

primitive actions (low-level actions – LLAs). These LLAs are organized into action routines

(Intermediate-level actions – ILAs). SHAKEY solves problems by constructing a sequence of ILAs

that will achieve a specific goal.

(3) The STRIPS problem-solving software is an example of logic programming. It explores the logical

consequences of SHAKEY’s model of its current environment in order to work out which ILAs can

be applied in that environment.

(4) STRIPS then works out how the model would need to be updated if each ILA were executed in

order to develop a tree of possible ILA sequences. If one of the branches of the tree leads to the

desired goal state then SHAKEY implements the sequence of ILAs on that branch.

Situated cognition theorists react against some of the fundamental tenets of GOFAI

cognitive science and robotics.

(1) GOFAI programs such as SHRDLU and SHAKEY can interact (virtually) with their environments. But

situated cognition theorists argue that they are not properly situated in their environments. The

real work of putting intelligence into these agents is not done by the systems themselves, but by

the programmers.

(2) The world of a GOFAI robot is already defined for it in terms of a small number of basic concepts.

Likewise for its motor repertoire. This avoids the real problems of decoding the environment and

reacting to the challenges it poses.

(3) Situated cognition theorists think that instead of focusing on simplified and scaled-down versions

of “high-level” tasks, cognitive scientists should look at how simple organisms such as insects

solve complex but ecologically valid problems.

(4) Biorobotics is the branch of robotics that builds models of biological organisms reflecting the basic

design principles that have emerged in evolution. A good example is Barbara Webb’s work on

cricket phonotaxis.

Subsumption architectures are a powerful tool developed by situated cognition theorists

such as Rodney Brooks.

(1) Subsumption architectures are not made up of functional subsystems in the way that modular

architectures are. Instead they are built up from layers of semi-autonomous subsystems that work

in parallel.

(2) Subsumption architectures are built to mimic how evolution might work. New systems are grafted

on in layers that typically don’t change the design of the existing systems.

(3) Subsumption architectures trade as much as possible on direct perception–action links that allow

the online control of action.

Subsumption architectures do not typically have decision-making systems built into

them. Problems of action selection are solved by predefined precedence relations among

From Subsumption Architectures to Behavior-Based Robotics 433



subsystems. Situated cognition theorists have to work out a more flexible solution to the

action selection problem

(1) One approach is to develop a hybrid architecture, combining a subsumption architecture for low-

level reactive control with a more traditional symbolic central planner for high-level decision-

making.

(2) Behavior-based robotics takes another approach, more in the spirit of situated cognition. Behavior-

based architectures (such as that implemented in TOTO) represent their environments and use

those representations to plan actions. But these representations are not centralized or centrally

manipulated.

(3) In addition to reactive rules such as those in subsumption architectures, behavior-based robots

have basis behaviors programmed into them. These basis behaviors are more complex and

temporally extended than reactive rules. They can also be combined.

(4) Behavior-based robots can exhibit emergent behaviors that have not been programmed into them

(e.g., the flocking and foraging behaviors displayed by Matari±c’s Nerd Herd). Behavior-based

robots have also been shown to be capable of learning these emergent behaviors through

reinforcement learning.

Further Reading

SHAKEY is very well documented in technical reports published by SRI. These can be downloaded

at www.ai.sri.com/shakey/. Technical report 323 is particularly helpful. Also see the Encyclopedia

of Cognitive Science entry on STRIPS.

The philosopher Andy Clark is a very clear expositor of situated cognition and biorobotics – see

particularly his book Being There (1997) and chapter 6 of Clark 2001, as well as his book

Supersizing the Mind (2008) and a discussion of the book in Philosophical Studies (2011). For more

on morphological computation, including the two examples discussed in the text, see Pfeifer, Iida,

and Gómez 2006. Clancey 1997 is a general survey of situated cognition from the perspective of an

AI specialist. Several of Rodney Brooks’s influential papers are reprinted in his book Cambrian

Intelligence (1999), which also contains some more technical papers on specific architectures.

Brooks 1991 is also reprinted in Haugeland 1997.

For early versions of some of the criticisms of GOFAI made by situated cognition theorists, see

Dreyfus 1977. For a very different way of thinking about situated cognition (in terms of

situatedness within a social environment), see Hutchins 1995. The Cambridge Handbook of

Situated Cognition (Robbins and Aydede 2008) is a useful and comprehensive resource, with a

strong emphasis on the philosophical underpinnings of the situated cognition movement. For more

on embodied cognition, see Shapiro 2007, Chemero 2009, Adams and Aizawa 2010, Shapiro 2011,

Anderson, Richardson, and Chemero 2012, and Lawrence Shapiro’s chapter in Margolis, Samuels,

and Stich 2012.

Arkin 1998 is a comprehensive textbook on behavior-based robotics. For a more programming-

oriented survey, see Jones and Roth 2003. Winfield 2012 is a more recent introduction. Maja

Matari±c has written many papers on behavior-based robotics (see online resources). Matari±c 1997,
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1998 are good places to start. Readers interested in building their own mobile robots will want to

look at her book The Robotics Primer (2007).

The robot cricket made its first appearance in Webb 1995. Shigeo Hirose was a pioneer of bio-

inspired robotics, starting out with snakes, as described in his book Hirose 1993. For a more

contemporary overview of bio-inspired robotics, see Ijspeert 2014 and, for examples of specific

projects, see Libby et al. 2012 (tailed-assisted pitch control in lizards and dinosaurs). Koh et al.

2015 (water jumping robots) and Graule et al. 2016 (insects perching and taking off ).
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Overview

Cognitive science has provided massive and important insights into the human mind. We have

explored a good number of these in this book. These insights all stem from the single basic idea

governing cognitive science as the interdisciplinary science of the mind. This is the idea that mental

operations are information-processing operations.

This book began by looking at how this way of thinking about the mind first emerged out of

developments in seemingly disparate subjects, such as mathematical logic, linguistics, psychology,

and information theory. Most of the significant early developments in cognitive science explored

the parallel between information processing in the mind and information processing in a digital

computer. As cognitive scientists and cognitive neuroscientists developed more sophisticated tools

for studying and modeling the brain, the information-processing principle was extended in new

directions and applied in new ways.

The interdisciplinary enterprise of cognitive science is now in excellent health. There are more

contributing disciplines than ever before. Cognitive scientists have an ever-expanding range of

theoretical models to work with. And there is a constant stream of technological advances in the

machinery that cognitive scientists can use to study the brain. It is hard not to have a sense of

optimism – a sense that cognitive science is getting close to a fundamental breakthrough in

understanding cognition and the mind.
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What I want to do now is to look ahead at some of the challenges and opportunities facing

cognitive science at this exciting time. What follows is a small and highly personal selection of

these challenges and potential applications.

17.1 Exploring the Connectivity of the Brain: The Human
Connectome Project and Beyond

The successful completion of the Human Genome Project was one of the most significant

scientific events of the last few decades. For the first time scientists succeeded in identifying

and mapping the 20,000 to 25,000 genes in the human gene pool, giving unprecedented

insights into human genetic makeup. The Human Genome Project was so successful that it

focused the minds of funding agencies on huge, collaborative projects.

In July 2009 the National Institutes of Health (NIH) announced what is in effect a

cognitive science equivalent of the Human Genome Project – the Human Connectome

Project. According to the funding opportunity announcement, “The overall purpose of this

5-year Human Connectome Project (HCP) is to develop and share knowledge about the

structural and functional connectivity of the human brain.” Awards of $40 million were

made to two consortia of research universities and institutes. The resulting collaborative

and multisite effort has tackled some of the theoretical issues highlighted at various points

in this book – such as the relation between different types of brain connectivity, and the

importance of calibrating different tools for studying the brain.

As outlined in a position paper in Nature Neuroscience by leading researchers in one of the

two funded consortia (Glasser et al. 2016), the HCP has generated not just considerable

amounts of data, but also proposed a new paradigm for neuroimaging research that aims to

address longstanding methodological problems with scanning and analyzing the resulting

data (some of which were identified in Chapter 9). Key elements of the paradigm proposed

in Glasser et al. 2016 include

■ acquiring large amounts of high-quality data on as many subjects as feasible, combining

different experimental techniques

■ focusing on data with high spatial and temporal resolution, and removing distortions,

noise and temporal artifacts

■ representing cortical and subcortical neuroimaging data in a common geometrical

framework (brainordinates), represented in a distinctive file format (CIFTI)

■ developing a parcellation of the brain into distinct regions, based on connectivity and

neuroanatomy

■ routinely sharing extensively analyzed results such as statistical maps (plus raw and

preprocessed data when feasible) together with the code used for the analysis, so that

other neuroscientists can make precise comparisons across studies, along with replicating

and extending findings

The aim and promise is to make neuroimaging more standardized and systematic. This will

make comparisons across subjects and populations much easier. In particular, it will make

it much easier to compare normal brains with brains that have suffered damage or disease.
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Looking ahead, important challenges include incorporating this (or a comparable)

standardizing framework across neuroimaging research, and then, within that framework,

developing databases on specific disorders. At the time of writing (summer 2018), ongoing

projects under the auspices of the Connectome Coordination Facility include the

Alzheimer’s Disease Connectome Project, the Epilepsy Connectome Project, the Human

Connectome Project for Early Psychosis, and Connectomes Related to Anxiety and

Depression.

17.2 Understanding What the Brain Is Doing When
It Appears Not to Be Doing Anything

One of the themes of the Human Connectome Project has been the importance of

studying the brain’s resting state. This is another frontier for neuroscience.

Neuroimaging and electrophysiological experiments standardly explore what happens

in the brain when certain very specific tasks are being carried out. So, for example, neuro-

imaging experiments typically identify the different brain areas where the BOLD contrast

is highest during a given task. This is the basis for inferences about localization of

function in the brain. But, some researchers have argued, task-specific activation is simply

the tip of the iceberg. Marcus Raichle and colleagues at Washington University in St.

Louis have argued that we shouldn’t just pay attention to departures from the baseline set

by the brain’s default mode of operation. There is a huge amount of activity going on in

the brain even when subjects are resting with their eyes closed, or passively looking at a

fixed stimulus. This default mode of brain function has not yet been systematically

studied by neuroscientists, but may be quite fundamental to understanding cognition.

Concentrating solely on task-dependent changes in the BOLD signal may turn out to be

like trying to understand how tides work by looking at the shape of waves breaking on

the shore.

What is now often called the default mode network (DMN) can be studied in pure

resting state experiments, where subjects are imaged while not performing any directed

task. The brain areas most frequently identified in such experiments include the medial

posterior cortex, particularly the posterior cingulate cortex and the precuneus, and the

medial frontal cortex, in addition to areas around the temporoparietal junction

area (TPJ).

One interesting possibility starting to gain traction is that some cognitive disorders and

diseases may be correlated with impaired functioning of the DMN. A number of studies

have observed significant correlations between deteriorating connectivity of the DMN over

time and two well-known markers of early Alzheimer’s – rising levels of amyloid beta (the

key component of brain plaques in Alzheimer’s) and pathologies of tau protein (which

form tangles inside neurons and disturbs synaptic communication). For large studies, see

Chhatwal et al. 2013, Thomas et al. 2014, and Buckley et al. 2017. Epilepsy, Parkinson’s,

and ADHD are other disorders where impaired functioning of the DMNmay be important,

as reviewed in Mohan et al. 2016.
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17.3 Neural Prosthetics

Suppose that, as many cognitive scientists think, important cognitive functions are

carried out by functionally specialized systems that are themselves implemented in

specific neural locations. Wouldn’t it then be possible to build mechanical devices that

could replace a damaged system in the brain, reversing the effects of disease or injury?

Cognitive science certainly predicts that this type of neuroprosthesis ought to be possible.

If cognitive systems are computational devices, whose job is basically transforming a

certain type of input into a certain type of output, then the crucial thing to work out is

how the input and output are represented in the brain, and what the basic transform-

ations are. If this can be done, then the only obstacles to building neuroprostheses are

technological.

In fact, some types of neuroprostheses are already widely used. Cochlear implants can

restore hearing to individuals with hearing problems – even to the profoundly deaf. They

work by providing direct electrical stimulation to the auditory nerve (doing the job that

would otherwise be done by hair cells in the cochlea, which is in the inner ear). This is an

input prosthetic. Output prosthetics are much more complicated.

Scientists and engineers in Theodore Berger’s lab at the University of Southern Califor-

nia have been working on a pioneering example of an output prosthetic. They have been

designing and building a prosthetic implant to restore normal functioning when the

hippocampus is damaged (the hippocampus plays an important role in forming and

storing memories). The aim is to develop a device that will measure electrical inputs

to the hippocampus; calculate what outputs would typically be generated in normal

subjects, and then stimulate areas of the hippocampus to mimic a normally functioning

brain. When the second edition of this afterword was being written (August 2013), an

early prototype hippocampal prosthetic had been tested in rats (Berger et al. 2012)

and monkeys. Now, 5 years later, the first tests have been carried out on humans,

showing a significant improvement in episodic memory in epilepsy patients (Hampson

et al. 2018).

Exoskeletons (robot suits) are an even more dramatic example of output prosthetics.

Neuroscientists, working together with biomechanical engineers, have produced motor

prostheses that restore some movement to paralyzed patients. At the opening ceremony of

the 2014 Soccer World Cup in Brazil, a young Brazilian paraplegic wearing an exoskeleton

got out of his wheelchair and kicked the ball to demonstrate the rehabilitation possibilities.

The exoskeleton was designed by a team led by Gordon Cheng at the Technical University

in Munich. The hydraulically powered suit is built from lightweight alloys. The user’s EEG

waves are read and translated into signals that control the robot’s limbs. At the same time,

feedback is sent to the user’s brain from sensors in the soles of the robot’s feet. The brain-

computer interface making this all possible was developed by Miguel Nicolelis at the Duke

University Medical Center. For an open-access review of brain-computer interfaces in

rehabilitative medicine, see Lazarou et al. 2018.
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17.4 Cognitive Science and the Law

The intensely interdisciplinary nature of cognitive science has been a recurring theme in this

book. We have looked at how cognitive science has been molded by contributions from

psychology, philosophy, neuroscience, linguistics, computer science, andmathematics – to

give just a partial list. But the list of disciplines to which cognitive science is potentially

relevant is even longer. One area where the dialog with cognitive science is gainingmomen-

tum is law.

There are many points of contact between cognitive science and the law. Eyewitness

testimony is a good example. Eyewitness testimony is a fundamental pillar of almost every

legal system, including retrospective identification through line-ups and similar tech-

niques. Yet there is strong evidence that eyewitness testimony is both unreliable and

manipulable (see Busey and Loftus 2007), leading to serious miscarriages of justice (subse-

quently discovered, for example, through DNA evidence). For those and other reasons, the

National Academy of Sciences convened an expert panel to study how identification errors

arise in eyewitness testimony.

The resulting report, Identifying the Culprit: Assessing Eyewitness Identification, released in

2014, made a number of recommendations for courts and for law enforcement agencies.

For example,

(i) line-ups should be administered by “blinded” managers who have no knowledge of which

participant is suspected of the crime

(ii) witness instructions should be standardized and designed to yield a consistent and con-

servative response

These and other recommendations were incorporated into Justice Department guidelines

in 2017. See Albright 2017 for a review of the scientific issues emerging from the report and

some of its specific recommendations.

Neuroscientific studies and findings are increasingly being used in court cases and this

has given rise to the area known as neurolaw, where cognitive science intersects with

forensic psychiatry, as well as legal practice. For a range of perspectives on neurolaw see

the essays in Morse and Roskies 2013.

Some examples of questions actively being explored in this area:

■ How can courts use neuroscientific findings to adjudicate questions about competence and

capability that may arise, for example, in end of life issues?

■ Are there prospects for developing brain-based techniques of lie detection?

■ How should neuroscientific evidence be used as part of an insanity defense, or as evidence

of mitigating circumstances?

■ Does the use of neuroscientific evidence in courtrooms pose potential challenges to privacy

rights?

■ Can neuroscience be used to predict recidivism in offenders?
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■ Are there possibilities for neuroscience-based interventions that will diminish the risk of an

offender reoffending (e.g., deep brain stimulation as a way of reducing sexual drive)?

Some of these issues remain in the realm of theory. But others have had serious practical

ramifications. In Miller v. Alabama, decided in 2012, the US Supreme Court decided that

mandatory life sentences without the possibility of parole are unconstitutional for juvenile

offenders. Justice Elena Kagan, writing for the majority, cited an amicus brief from the

American Psychological Association summarizing a range of evidence from neuroscience

and developmental psychology on adolescent brain development and associated vulner-

abilities. In Montgomery v. Louisiana, decided in 2016, the Court applied its earlier decision

retroactively, potentially affecting more than 2,000 currently incarcerated individuals.

17.5 Autonomous Vehicles: Combining Deep Learning and
Intuitive Knowledge

Research on self-driving cars has been one of the most visible products of the deep learning

revolution in AI. Self-driving cars have been tested on semipublic roads and both large

corporations and small start-ups are making ambitious predictions about when they will be

widely available. In fact, 2018 was the target date proposed in 2015 both by Elon Musk of

Tesla and by Google. But a series of widely publicized crashes, some fatal, have put

something of a dampener on the enthusiasm.

As we saw in Chapter 12, deep learning algorithms have exponentially increased the

power of machine learning, both with and without supervision. For many cognitive

scientists and other observers, though, deep learning has its limitations. The great successes

of deep learning have all been in relatively circumscribed domains. Chess and Go are

obvious examples. But so too is image recognition. Image recognition is a purely passive

activity. It is a matter of identifying patterns in a data set and then projecting those

patterns onto new exemplars. Admittedly, pattern recognition is no mean achievement.

Traditional AI and machine learning were only able to make limited progress for many

years, whereas deep learning algorithms can outperform human experts on many

complex tasks.

But still, many have thought that self-driving cars (and other forms of autonomous

vehicles, such as submarines, planes, and drones) need more than sensitivity to patterns

and the ability to learn from experience. They need to be able to deal with the unexpected –

completely unpredictable behavior from other drivers, pedestrians, cyclists (not to mention

wild animals and livestock). Will it always be possible for a self-driving car to deal with

unpredictable situations by extrapolating from its training set? Boosters for current designs

for self-driving cars think so, but others are not so sure.

Some cognitive scientists see a need for self-driving cars to have an analog of the

intuitive knowledge that humans call common sense. Specifically, they observe that

human drivers are constantly exploiting their knowledge of physical objects and how

objects move and behave, as well as their knowledge of other drivers and road-users. In
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other words, human driving exploits some of the key abilities that we have looked at in

earlier chapters – what we called folk physics in Chapter 11 and mindreading in Chap-

ters 13 and 14. So, a key challenge, perhaps the key challenge, for designers of self-driving

cars is how to equip their vehicles with this kind of very general knowledge.

It may turn out that folk physics and mindreading abilities ultimately rest on very

sophisticated forms of pattern recognition, so that learning them is within the reach of

some version of deep learning algorithms (although perhaps ones that differ significantly

from existing algorithms and networks). Alternatively, they may depend upon fundamen-

tally different forms of learning. This second possibility is where an MIT spin-off company

called iSee is placing its bets. The company is developing forms of probabilistic program-

ming inspired by Bayesian models of the mind to equip self-driving cars with the common

sense that they seem currently to lack.

These are just some of the exciting challenges and opportunities opening up for cognitive

scientists in the years ahead. I hope that readers of this book will pursue these – and, I hope,

develop others.
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1 The founders of iSee are associated with Joshua Tenenbaum’s lab at MIT. We looked at his work in
Chapter 12. There is a short article on iSee in the online MIT Technology Review (published on

September 20, 2017).



GLOSSARY

abduction (abductive reasoning): a form of reasoning in which one derives a conclusion as the

best explanation of given evidence, even though it is not entailed by the evidence that it

explains.

absolute judgment: a judgment about the intrinsic properties of a stimulus (e.g., naming a color or

identifying the pitch of a particular tone), as opposed to a relative judgment comparing two

stimuli.

access consciousness (or A-consciousness): information available or “poised” for conscious

thought and action.

action potentials: electrical impulses fired by neurons down their axons to other neurons.

activation function: a function that assigns an output signal to a neural network unit on the basis

of the total input to that unit.

algorithm: a finite set of unambiguous rules that can be systematically applied to an object or set of

objects to transform it or them in definite ways in a finite amount of time.

anatomical connectivity: the anatomical connections between different brain regions.

anterograde amnesia: the loss of memory of events after the onset of a brain injury.

artificial neural network (connectionist network): an abstract mathematical tool for modeling

cognitive processes that uses parallel processing between intrinsically similar units (artificial

neurons) organized in a single- or multilayer form.

attractor: a region in the state space of dynamical systems on which many different trajectories

converge.

autoencoder: type of unsupervised neural network important in deep learning. It can learn to

represent features by compressing data through a bottleneck.

backpropagation algorithm: a learning algorithm in multilayer neural networks in which error is

spread backward through the network from the output units to the hidden units, allowing the

network to modify the weights of the units in the hidden layers.

Bayesianism:movement in statistics that interprets probability subjectively and holds that

rational thinkers will update their probabilities according to Bayes’s Rule and that rational

agents will maximize expected utility.

Bayes’s Rule: gives a way of calculating the posterior probability of a hypothesis, conditional

upon some evidence. To apply it, you need to know the prior probability of the hypothesis and

the likelihood of the evidence, conditional upon the hypothesis.

behavior-based robotics: movement in robot design that moves beyond purely reactive

subsumption architectures by allowing robots to represent their environment and to

plan ahead.

behaviorism: the school of psychology holding that psychologists should only study observable

phenomena and measurable behavior. Behaviorists maintain that all learning is the result of

either classical/Pavlovian or operant conditioning.

binding problem: the problem of explaining how information processed in separate neural areas

of the information-processing pathway is combined to form representations of objects.
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binocular rivalry: phenomenon that occurs when different images are presented to each eye.

Subjects experience an alternation of the images.

biorobotics: the enterprise of designing and building models of biological organisms that reflect

the basic design principles of those organisms.

bit: a measure of the information necessary to decide between two equally likely alternatives. For

decisions between n alternatives, the number of bits = log

blindsight:

Boolean function: a function that takes sets of truth values as input and produces a single truth

value as output.

Brodmann areas: different regions of the cerebral cortex identified by the neurologist Korbinian

Brodmann. The primary visual cortex, for example, is Brodmann area 17.

cerebral cortex: the parts of the brain, popularly called “gray matter,” that evolved most recently.

channel capacity: the maximum amount of data that an information channel can reliably

transmit.

chatbot: a program set to respond to certain cues by making one of a small set of preprogrammed

responses; these programs cannot use language to report on or navigate their environments

because they do not analyze the syntactic structure or meaning of the sentences they encounter.

cheater detection module: hypothetical cognitive system specialized for identifying a “free rider”

in a social exchange (i.e., a person who is reaping benefits without paying the associated costs).

chunking:Miller’s method of relabeling a sequence of information to increase the amount of data

that the mind can reliably transmit, for example, relabeling sequences of digits with single

numbers, i.e., 1100100 becomes “100.”

Church–Turing thesis: the thesis that the algorithmically calculable functions are exactly the

functions that can be computed by a Turing machine.

classical/Pavlovian conditioning: the process of creating an association between a reflex response

and an initially neutral stimulus by pairing the neutral stimulus (e.g., a bell) with a stimulus (e.g.,

food) that naturally elicits the response (e.g., salivation).

competitivenetwork: anexample of an artificial neural network thatworks byunsupervised learning.

computation: purely mechanical procedure for manipulating information.

computational neuroscience: the use of abstract mathematical models to study how the collective

activities of a population of neurons could solve complex information-processing tasks.

conditional probability: the probability that some proposition A is true, on the assumption that

some other proposition is true, e.g., the probability that it is raining (A) if we assume that it is

cloudy (B). Written as p(A/B).

congruence priming: a priming task in which the basic category of a prime (e.g., a tool) enhances

the salience of other stimuli matching that category (e.g., other tools).

connectionist network: see artificial neural network.

connectivity, anatomical: physiological connections between segregated and distinct cortical

regions.

contralateral organization: occurs when each hemisphere of the brain processes input

information from the opposite side of space (e.g., when an auditory stimulus presented to the

right ear is processed by the left hemisphere of the brain).
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a neurological disorder typically resulting from lesions in the primary visual cortex (V1,

or the striate cortex). Like unilateral spatial neglect patients, blindsight patients report little to

no awareness in one side of their visual field.

BOLD signal: the Blood Oxygen Level Dependent (BOLD) signal measures the contrast between

oxygenated and deoxygenated hemoglobin in the brain, generally held to be an index of

cognitive activity. The increase in blood oxygen can be detected by an fMRI scanner because

oxygenated and deoxygenated hemoglobin have different magnetic properties.



convolutional neural network: type of deep learning neural network very important in machine

vision. Characterized by sparse connectivity, shared weights, and invariance under translation.

Particularly well suited to image recognition.

co-opted system: according to simulation theory, a system specialized for a specific cognitive task

that is then used to perform related mindreading tasks.

corpus callosum: the large bundle of fibers connecting the two hemispheres of the brain.

counterfactual: a statement about what would have happened had things been different.

covert attention: the possibility of directing attention at different peripheral areas while gaze is

fixated on a central point.

cross-lesion disconnection experiments: experiments designed to trace connections between

cortical areas in order to determine the pathways along which information flows. These

experiments take advantage of the fact that the brain is divided into two hemispheres, with the

major cortical areas being the same on each side.

cross-talk: the process in which separate subsystems collaborate in solving information-processing

problems using each other’s outputs as inputs.

decision trees: a branching representation of all possible paths through a problem space starting

from an initial point.

deep learning: very impactful approach to machine learning using multilayered and hierarchically

organized artificial neural networks to achieve representation learning.

deep structure: in Chomskyan linguistics, the deep structure of a sentence is its “real” syntactic

structure, which serves as the basis for fixing its meaning. Two sentences with different surface

structures can have the same deep structure (e.g., “John kissed Mary” and “Mary was kissed by

John”).

dichotic listening experiments: experiments in which subjects are presented with information in

each ear in order to investigate selective attention in the auditory system.

dishabituation paradigm: a method for studying infant cognition that exploits the fact that

infants look longer at events that they find surprising.

distributed representation: occurs when (as in many connectionist networks) objects or properties

are represented through patterns of activation across populations of neurons, rather than

through individual and discrete symbols.

domain-specific: term used to characterize cognitive mechanisms (modules) that carry out a very

specific information-processing task with a fixed field of application.

dorsal pathway: the neural pathway believed to be specialized for visual information relevant to

locating objects in space. This pathway runs from the primary visual cortex to the posterior

parietal lobe.

double dissociation: experimental discovery that each of two cognitive functions can be

performed independently of the other.

dynamical systems hypothesis: radical proposal to replace information-processing models in

cognitive science with models based on the mathematical tools of dynamical systems theory.

dynamical systems theory: branch of applied mathematics using difference or differential

equations to describe the evolution of physical systems over time.

early selectionmodel: a cognitive model of attention in which attention operates as a filter early in

the perceptual process and acts on low-level physical properties of the stimulus.

EEG (electroencephalography): experimental technique for studying the electrical activity of

the brain.

effective connectivity: the causal flow of information between different brain regions.

entropy: a measure of how well a particular attribute classifies a set of examples. The closer the

entropy is to 0, the better the attribute classifies the set.
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event-related fMRI: neuroimaging technique for measuring the BOLD signal associated with

rapidly changing neural events, which is possible because of the linear nature of the

hemodynamic response.

event-related potentials (ERPs)/event-related magnetic fields: cortical signals that reflect neural

network activity that can be recorded noninvasively using EEG or MEG.

expected utility: the expected utility of an action is the sum of the utility anticipated from each of

its possible outcomes, each discounted by its probability. In Bayesianism, rational agents

maximize expected utility.

expert systems research: a field of artificial intelligence that aims to reproduce the performance of

human experts in a particular domain.

false belief task: an experimental paradigm first developed by psychologists Heinz Wimmer and

Joseph Perner, exploring whether young children understand that someone might have

mistaken beliefs about the world.

feature engineering: the process in machine learning of classifying a database in terms of relevant

features.

feature learning: see representation learning.

feedforward network: a connectionist network in which activation spreads forward through the

network; there is no spread of activation between units in a given layer or backward from one

layer to the previous layer.

fixed neural architectures: the identification of determinate regions of the brain associated with

particular types of modular processing.

fMRI (functional magnetic resonance imaging): technology for functional neuroimaging that

measures levels of blood oxygen as an index of cognitive activity.

folk physics: an intuitive understanding of some of the basic principles governing how physical

objects behave and interact.

formal property: a physical property of a representation that is not semantic (e.g., a formal

property of the word “apple” is that it is composed of six letters of the English alphabet).

fovea: area in the center of the retina where visual acuity is highest, corresponding to the center of

the visual field.

frame problem: the problem of developing expert systems in AI and building robots that can build

into a system rules that will correctly identify what information and which inferences are

relevant in a given situation.

functional connectivity: the statistical dependencies and correlations between activation in

different brain areas.

functional decomposition: the process of explaining a cognitive capacity by breaking it down into

subcapacities that can be analyzed separately. Each of these subcapacities can in turn be broken

down into further nested subcapacities, until the process bottoms out in noncognitive

components.

functional neuroimaging: a tool that allows brain activity to be studied noninvasively while

subjects are actually performing experimental tasks (e.g., PET, fMRI).

functional system: a system that can be studied and understood primarily in terms of the role it

plays and the task that it executes, irrespective of the mechanism of implementation. These

systems are studied only at the computational level and are multiply realizable. (Seemultiple

realizability.)

global workspace theory of consciousness: a leading theory of how mental states become

conscious. According to this theory, attention makes low-level modular information available to

conscious control (the “global workspace”), where the information is then “broadcast” to other

areas of the brain.
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GOFAI: good old-fashioned artificial intelligence – as contrasted, for example, with artificial

neural networks, or biorobotics.

graceful degradation: the incremental deterioration of cognitive abilities that is imperceptible

within small time frames.

halting problem: the problem first raised by David Hilbert of algorithmically determining whether

a computer program will halt (i.e., deliver an output) for a given input.

hard problem of consciousness: the problem of explaining phenomenal consciousness by

appealing to physical processes in the brain and using the traditional tools of cognitive

science.

Hebbian learning: Donald Hebb’s model of associative process according to which “neurons that

fire together, wire together.”

heuristic search hypothesis: Newell and Simon’s hypothesis that problems are solved by

generating and algorithmically transforming symbol structures until a suitable solution structure

is reached.

hidden layer: a layer of hidden units in an artificial neural network.

hidden unit: a unit (artificial neuron) in an artificial neural network whose inputs come from

other units and whose outputs go to other units.

informational encapsulation: property of modular systems that operate with a proprietary

database of information and are insulated from background knowledge and expectations.

information channel: a medium that transmits information from a sender to a receiver (e.g., a

telephone cable or a neuron).

integration, principle of: fundamental idea of neuroscience stating that cognitive function

involves the coordinated activity of networks of different brain areas, with different types of

tasks recruiting different types of brain areas.

intentional realism: the thesis that propositional attitudes (e.g., beliefs and desires) can cause

behavior.

intentionality: property in virtue of which symbols represent objects and properties in the

world.

interocular suppression: a technique used to study consciousness, in which one eye is presented

with an image of an object while the other eye is presented simultaneously with a high-contrast

pattern that blocks conscious awareness of the presented image.

joint visual attention: occurs when infants look at objects, and take pleasure in doing so, because

they see that another person is both looking at that object and noticing that the infant is also

looking at the object.

Knowledge Argument: a thought experiment proposed by Frank Jackson and featuring a

neuroscientist called Mary who is confined to a black-and-white room and has never

experienced colors. Mary knows all the physical facts there are to be known, and yet, according

to Jackson, there is a fact that she discovers when she leaves the room – the fact about what it is

like for someone to see red.

language of thought hypothesis: a model of information processing developed by Jerry Fodor that

holds that the basic symbol structures that carry information are sentences in an internal

language of thought (sometimes called Mentalese) and that information processing works by

transforming those sentences in the language of thought.

late selection model: a cognitive model of attention in which attention operates as a filter on

representations of objects after basic perceptual processing is complete.

Leibniz’s Mill: a thought experiment used by Gottfried Wilhelm Leibniz to draw a contrast between

understanding the physical parts of themindandunderstanding the distinctive nature of conscious

perceptions.
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lexical access: the processing involved in understanding single words.

likelihood: important concept for Bayes’s Rule, measuring the probability of some evidence E,

conditional upon a hypothesis H – i.e., how likely you think it is that you would see the evidence

if the hypothesis were true. It is standardly written as the conditional probability p(E/H).

linear separability: characteristic of Boolean functions that can be learned by neural networks

using the perceptron convergence learning rule.

local algorithm: a learning algorithm in a connectionist network in which an individual unit

weight changes directly as a function of the inputs to and outputs from that unit (e.g., the

Hebbian learning rule).

localfield potential (LFP): an electrophysiological signal believed to be correlated with the sum of

inputs to neurons in a particular area.

locus of selection problem: the problem of determining whether attention is an early selection

phenomenon or a late selection phenomenon.

logical consequence: a conclusion is the logical consequence of a set of premises just if there is no

way of interpreting the premises and conclusion that makes the premises all true and the

conclusion false.

logical deducibility: one formula is logically deducible from another just if there is a sequence of

legitimate formal steps that lead from the second to the first.

machine learning: the production of an algorithm that will organize a complex database in terms

of some target attribute by transforming symbol structures until a solution structure, or decision

tree that will clarify incoming data, is reached.

machine learning algorithm: an algorithm for constructing a decision tree from a vast database

of information.

mandatory application: a feature of modules where cognitive modules respond automatically to

stimuli of the appropriate kind. They are not under any level of executive control.

masked priming: a priming task in which a stimulus is made invisible through presenting a second

stimulus (the mask) in rapid succession.

massive modularity hypothesis:holds that all information processing is carried out by specialized

modules thatemerged inresponse tospecificevolutionaryproblems(e.g.,cheaterdetectionmodule).

MEG (magnetoencephalography): brain imaging technique that measures electrical activity in

the brain with magnetic fields.

mental architecture: a model of the mind as an information processor that answers the following

three questions: In what format is information carried in a cognitive system? How is information

in the cognitive system transformed? How is the mind organized to function as an information

processor?

metarepresentation: metarepresentation occurs when a representation is used to represent

another representation rather than to represent the world (e.g., a representation of another

person’s mental state).

micro-world: an artificially restrictive domain used in AI in which all objects, properties, and

events are defined in advance.

mirror neurons: neurons in monkeys that fire both when the monkey performs a specific action

and when it observes that action being performed by an observer.

module: cognitive system dedicated to performing a domain-specific information-processing task.

Typically held to be informationally encapsulated but not necessarily to have a fixed neural

architecture.

morphological computation: a research program in robotics for minimizing the amount of

computational control required in a robot by building as much as possible of the computation

directly into its physical structure.
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multilayer network: an artificial neural network containing one or more hidden layers.

multiple realizability: a characteristic of functional systems whose tasks can be performed by a

number of different physical manifestations. For example, a heart, when viewed as a functional

system, is multiply realizable because human hearts and mechanical hearts can perform the

same function.

neuroeconomics: interdisciplinary area where concepts and tools from economics are used to

illuminate brain functioning.

neurotransmitters: neurochemicals that are transmitted across synapses in order to relay, amplify,

and modulate signals between a neuron and another cell.

object permanence: the knowledge that an object exists even when it is not being perceived – an

important milestone in children’s development.

operant conditioning: a type of conditioning in which an action (e.g., pushing a lever) is

reinforced by a reward (e.g., food).

overregularization errors: systematic mistakes that children make during the process of language

acquisition as they begin to internalize basic grammar rules. Children apply rules (such as adding

the suffix “-s” to nouns to make them plural) to words that behave irregularly (e.g., saying

“foots” instead of “feet”).

paired-image subtraction paradigm: an experimental technique that allows neuroimagers to

identify the brain activation relevant to a particular task by filtering out activation associated

with other tasks.

parallel processing: simultaneous activation of units in an artificial neural network that causes a

spread of activation through the layers of the network.

perceptron: a single-unit (or single-layer) artificial neural network.

perceptron convergence rule (delta rule): a learning algorithm for perceptrons (single-unit

networks). It changes a perceptron’s threshold and weights as a function of the difference

between the unit’s actual and intended output.

PET (positron emission tomography): a functional neuroimaging technique in which

localization of cognitive activity is identified by measuring blood flow to specific areas of

the brain.

phenomenal consciousness (or P-consciousness): the experiential or “what it’s like” aspect of

consciousness (e.g., the distinctive experience of smelling a rose or touching a piece of

velvet cloth).

phrase structure grammar: describes the syntactic structure of a natural language sentence in

terms of categories such as verb phrase and noun phrase. Permissible combinations of syntactic

categories are given by phrase structure rules, e.g., the rule stating that every sentence must

contain both a verb phrase and a noun phrase.

physical symbol system: a set of symbols (physical patterns) that can be combined to form

complex symbol structures and contains processes for manipulating symbol structures. These

processes can themselves be represented by symbols and symbol structures within the system.

physical symbol system hypothesis: Newell and Simon’s hypothesis that a physical symbol

system has the necessary and sufficient means for general intelligent action.

posterior probability: this is the result of applying Bayes’s Rule. It is the probability of a

hypothesis H, conditional upon some evidence E (i.e., the conditional probability p(H/E)).

poverty of stimulus argument:maintains that certain types of knowledge must be innate, as they

are too complicated to be learned from the impoverished stimuli to which humans are exposed

(e.g., Chomsky’s argument for Universal Grammar).

pragmatics: the branch of linguistics concerned with the practical implication of language and

what is actually communicated in a given context.
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predicate calculus: formal system for exploring the logical relations between formulas built up

from symbols representing individuals, properties, and logical operations. Unlike the

propositional calculus, the predicate calculus includes quantifiers (ALL or SOME) that allow

representations of generality.

prestriate cortex: an area in the occipital and parietal lobes that receives cortical output from the

primary visual cortex.

primary visual cortex: the point of arrival in the cortex for information from the retina; also called

the striate cortex and Brodmann area 17.

priming: an experimental technique, particularly useful in studying consciousness, where a

stimulus (often not consciously perceived) influences performance on subsequent tasks.

principle of cohesion: principle of infant folk physics according to which two surfaces are part of

the same object if and only if they are in contact.

principle of contact: principle of infant folk physics according to which only surfaces that are in

contact can move together.

principle of continuity: principle of infant folk physics according to which objects can only

move on a single continuous path through space–time.

principle of solidity: principle of infant folk physics according to which there cannot be more

than one object in a place at one time.

prior probability: in applying Bayes’s Rule, this is the probability assigned to the hypothesis

before taking into account the evidence.

prisoner’s dilemma: any social exchange interaction between two players where a player benefits

most if she defects while her opponent cooperates and suffers most when she cooperates and her

opponent defects. If each player is rational and works backward from what her opponent might

do, she will always reason that the best choice is to defect.

propositional attitude: a psychological state that can be analyzed into a proposition (e.g., the

proposition that it is snowing in St. Louis) and an attitude to that proposition (e.g., the attitude

of belief or the attitude of hope).

propositional calculus: formal system for exploring the logical relations between formulas

built up from symbols for complete propositions using logical operators (such as NOT, OR,

and AND).

psychophysics: the branch of psychology that studies the relationship between physical stimuli

and how subjects perceive and discriminate them.

recurrent network: an artificial neural network that has a feedback loop serving as a memory of

what the hidden layer was doing at the previous time step.

recursive definition: process for defining a set of objects by starting with a set of base cases and

specifying which transformations of objects preserve membership in the set. So, for example, a

recursive definition of a well-formed formula in the propositional calculus starts with

propositional symbols (the base cases) and indicates which logical operations (e.g., negation)

create new formulas from existing formulas.

reduction: the process of showing how higher-level parts of science (e.g., thermodynamics) can be

understood in terms of more basic parts of science (e.g., statistical mechanics).

reinforcement learning: learning where the feedback is a reward signal (as opposed to the error

signal characteristic of supervised learning).

representation: structure carrying information about the environment. Representations can be

physical symbol structures or distributed states of neural networks.

representation learning: the subfield of machine learning dedicated to designing algorithms that

will do their own feature engineering on raw data.

retrograde amnesia: the loss of memory of events before a brain injury.
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robot reply (to the Russian room argument): a response to John Searle’s thought experiment that

claims that the Russian room is not intelligent because it is incapable of interacting with other

Russian speakers rather than because of any gap between syntax and semantics.

Russian room argument: John Searle’s thought experiment that attempts to refute the physical

symbol system hypothesis by showing that there can be syntactic symbol manipulation

without any form of intelligence or understanding.

saccadic eye movements: quick and unconscious eye movements scanning the visual field.

segregation, principle of: fundamental principle of neuroscience stating that the cerebral cortex is

divided into separate areas with distinct neuronal populations.

selection processor: mechanism hypothesized by Leslie enabling people to inhibit the default

setting of a true belief. It is not until the selection processor is fully in place that children can pass

the false belief task, according to Leslie.

selective attention: the ability of individuals to orient themselves toward, or process information

from, only one stimulus within the environment, to the exclusion of others.

semantic priming: a priming task in which the priming effect is due to the meaning of words and

not due to their phonology (how they are pronounced) or their orthography (how they are

spelled).

semantic property: a property of a representation that holds in virtue of its content, i.e., how it

represents the world (e.g., a semantic property of the word “apple” is the fact that it represents a

crisp and juicy fruit).

shared weights: feature of artificial neural networks where multiple units in a single layer have

the same weights. Makes for more efficient processing.

simulation theory (radical): the theory that mindreading takes place when people think about the

world from another person’s perspective rather than thinking about the other person’s

psychological states.

simulation theory (standard): the theory that people are able to reason about the mental states of

others and their consequent potential behaviors by inputting “pretend” beliefs and desires into

their own decision-making systems.

situated cognition: situated cognition theorists complain that traditional cognitive science has

focused on disembodied systems that operate in highly simplified and prepackaged

environments. They call instead for an approach to cognitive science that takes seriously the fact

that cognitive agents are both embodied and situated within a complex environment.

sparse connectivity: feature of artificial neural networks where units in a given layer are only

connected to a proper subset of units in the next layer.

spatial resolution: the degree of spatial detail provided by a particular technique for studying

the brain.

state space: the state space of a system is a geometrical representation of all the possible states that

the system can be in. It has as many dimensions, as the system has independently varying

quantities.

striate cortex: see primary visual cortex.

subcortex: the part of the brain, popularly called “white matter,” that developed earlier in

evolution than the cerebral cortex.

subsumption architecture: architectures in robotics that are built up incrementally from semi-

autonomous layers. Subsumption architectures (originally proposed by Rodney Brooks) typically

exploit direct links between perception and action.

supervised learning: learning (e.g., in neural networks) that involves an explicit error signal.

surface structure: in Chomskyan linguistics, the surface structure of a sentence is given by the

actual arrangement of written or spoken lexical items – as opposed to its deep structure.
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symbol-grounding problem: the problem of determining how syntactically manipulated symbols

gain semantic meaning.

synapse: the site where the end of an axon branch comes close to a dendrite or the cell body of

another neuron. This is where signals are transmitted from one neuron to another.

systems neuroscience: the investigation of the function of neural systems, such as the visual

system or auditory system.

systems reply (to the Chinese room argument): a response to John Searle’s thought experiment

claiming that the Chinese room as a whole understands Chinese, even though the person inside

the room does not.

temporal resolution: the degree of temporal detail provided by a particular technique for studying

the brain.

theory of mind mechanism (TOMM): a hypothesized cognitive system specialized for attributing

propositional attitudes and using those attributions to predict and explain behavior.

threshold: the minimum amount of activity necessary to initiate the firing of a unit in an artificial

neural network.

TIT FOR TAT: a successful strategy used in social exchanges, such as the prisoner’s dilemma

whereby a player cooperates with his opponent during the first round and in subsequent rounds

copies the action taken by the opponent on the preceding round.

transformational grammar: a theoretical account of the rules governing how surface structures in

natural languages are generated from deep structures.

truth condition: the state of affairs that makes a particular statement true.

truth rule: a rule that states the truth condition for a given statement.

Turing machine: a theoretical model of an abstract computation device that can (according to the

Church–Turing thesis) compute any effectively calculable function.

unilateral spatial neglect: a neurological disorder typically due to damage to the posterior parietal

cortex in one hemisphere in which patients describe themselves as unaware of stimuli in the

contralateral half of their visual field.

unsupervised learning: learning (e.g., in neural networks) where there is no explicit error or reward

signal.

utility: a widely used concept for measuring the value of an action or outcome to an individual. In

Bayesianism, rational agents maximize expected utility.

ventral pathway: the neural pathway believed to be specialized for visual information relevant to

recognizing and identifying objects. This pathway runs from the primary visual cortex to the

temporal lobe.

Wason selection task: experiment developed to test people’s understanding of conditional

reasoning. Subjects are asked to identify the additional information they would need in order to

tell if a given conditional statement is true or false.

well-formed formula: a string of symbols in a formal language that is legitimately constructed

through the formation rules of that language.
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